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4 Statistical Inference and Differential Privacy

1.1 Introduction: statistical inference in the presence of
privacy requirements

The primary objective of statistical inference is to learn about certain as-
pects of a population. This population may either be real or hypothetical, as
well as finite or infinite. Often it is the case that the inference is performed
on a smaller sample – a database – that is reasonably representative of the
population. The analyst identifies the unknown quantity of interest, posits a
statistical model that dictates the probabilistic relationship between the quan-
tity of interest and the observable data, and lets the observed data guide the
inferential conclusions. For the statistical inference to be reliable and trust-
worthy, it must be performed in a manner that appropriately accounts for the
various sources of uncertainty in the data collection, as well as any variability
due to data processing, including (but not limited to) the need for privacy
protection.

Because the privacy mechanism injects additional randomness into the
data products, analyzing them as if they had not gone through privacy protec-
tion may lead to erroneous statistical conclusions. In this chapter, we discuss
how to perform statistical inference based on privacy-protected data prod-
ucts. Our focus is on the methodology for carrying out statistical inference
based on privatized data to the best extent possible, where “best” speaks to
the quality of the inferential conclusions. Key to the possibility of good infer-
ence is when privacy protection can be performed in a transparent manner.
Knowledge about the privacy mechanism facilitates informed and principled
downstream statistical analysis.

Crudely speaking, the more privacy we wish to preserve, the less informa-
tion we should be able to learn. That is the intuition behind the privacy-utility
trade-off [2], the idea that the protection of the information of individuals
belonging to a population negatively impacts the ability to draw accurate
statistical conclusions about that population.

The privacy-utility trade-off, pitting the learning of population-level fea-
tures against the regulation of individual-level uncertainties, is as old as the
subject of statistical inference itself. Statistical inference is the science of tam-
ing noise and variability at higher resolutions, while revealing meaningful sig-
nal and regularity at lower resolutions. Therefore, while the differential privacy
constraint protects from learning about the individuals in the dataset, it need
not prevent the analyst from learning population-level characteristics to a
satisfactory level of accuracy.

In order to have a systematic discussion about balancing this trade-off, we
need to endorse an analytical conceptualization of both privacy and statistical
utility. How much privacy might we gain, if we can tolerate a fixed level of
uncertainty in the conclusions? On the other hand, if the statistical conclusion



Introduction: statistical inference in the presence of privacy requirements 5

must meet a certain quality level, what implications does it have on the privacy
of the individuals?

The definition of differential privacy is conducive to the quantified balance
between the needs for privacy protection and statistical utility. As discussed
in Chapter [formal-DP], differential privacy provides a notion of plausible
deniability for individual participants of the database. It ensures that the
analyst or attacker cannot know, to a high degree of certainty, about what
data any single participant contributed, or whether they contributed anything
at all. Within a given data curation setting, differential privacy quantifies the
extent of protection through the privacy loss budget. It is a sliding scale that
allows the data curator to choose the degree of privacy protection.

The concept of statistical utility, on the other hand, can have a varied
interpretation. Its meanings would differ depending on the specific goals of
the inference task. We begin the chapter with a discussion of the various
important and practical notions of statistical utility in Section 1.1.1. As we
will see in Section 1.1.2, the differential privacy requirement can be understood
as a constraint on the statistical information permissible in the data product
through the lenses of likelihood, frequentist, and Bayesian inference, leading
to natural ways of understanding the impact of privacy on statistical utility
within these inference schemes.

The remainder of the chapter is organized as follows. Section 1.2 sketches
the methodological elements for drawing statistical inference from differen-
tially private information. We motivate a general marginal likelihood construc-
tion by viewing the confidential data as latent observations, and underscore
the importance of a transparent privacy mechanism – that is, the probabilis-
tic characteristic of the privatized statistics relative to the confidential data
being known to the analyst. Section 1.3 provides an overview of the existing
methodologies for differentially private statistical inference. We make a prac-
tical distinction between methodologies designed for the dissemination-based
versus query-based data access modes, and remark that the former setting
is more general. Section 1.4 presents several open challenges in drawing sta-
tistical inference under differential privacy, including disclosure risk control
and individual feature prediction under differential privacy, the presence of
invariants and logical constraints to privatized data products, the need for
clamping queries with unbounded sensitivity, as well as considerations around
identifiability and estimability of parameters under privacy constraints, and
consistency of estimators that result from them. Section 1.5 concludes with a
discussion.

1.1.1 Statistical utility

Statisticians rarely speak of the utility of a data product as a standalone con-
cept. The discussion is only stipulated as we seek for the balance between
good privacy protection and high-quality statistical inference. Therefore, how
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to frame statistical utility as a measurable quantity comes down to the ques-
tion: what good qualities do we value the most in statistical inference?

An intuitive notion of statistical utility measures how close the private out-
puts are to the non-private outputs for the database at hand. These measures
are commonly employed in the computer science literature and are applied
to descriptive statistics. For example, the evaluation of the Disclosure Avoid-
ance System (DAS) of the 2020 Decennial Census P.L. 94-171 redistricting
data product includes the mean absolute error (MAE) and the mean abso-
lute percent error (MAPE) as accuracy measures for the population counts at
various geographic levels [73]. These measures are straightforwardly defined
in terms of the values of the original and the privatized statistics. They are
useful measures of the extent of perturbation in the published data product
incurred by the privacy mechanism.

However, simple closeness measures may not reflect how well the private
output can be used to learn about population-level quantities, as is often the
goal in statistical inference. A second class of statistical utility definitions
views the private statistic as an estimator of a population parameter of inter-
est. In this view, we can ask whether the statistic is unbiased, that is whether
the error due to privacy is zero in expectation, and whether it is consistent
for the parameter of interest, that is whether the error due to privacy would
become asymptotically negligible if more and more data could be collected.
For inference, it is important that we measure the variance of the estimator,
and more informatively its mean squared error (MSE). The MSE of an es-
timator is equal to the sum of its squared bias and its variance. A smaller
MSE is typically a sign of a high-quality estimator, for it gives the assurance
that on average, the amount that the estimator deviates from its estimand, as
measured in squared distance, is small. We may further inquire whether the
estimator is optimal in some sense. One such sense of optimality is minimax,
that is, whether the estimator poses the smallest maximal risk among all alter-
native estimators. Along these lines, there have been several promising results
[71, 20, 29], which established that a wide class of population-level parameters
can be estimated, under differential privacy protection, with asymptotically
negligible noise.

Beyond simply estimating an unknown quantity, we may wish to conduct
uncertainty quantification about the population parameter of interest based
on the private statistic. This could take the form of a hypothesis test or a
confidence region in the frequentist tradition, or a posterior distribution in
the Bayesian tradition. We will typically require these inferences to be exter-
nally valid, in the sense of meeting the nominal Type I error and coverage
rates, or being calibrated to the hypothetical replications of the data collec-
tion process. This is perhaps the most challenging goal of statistical inference
subject to differential privacy. Later in this chapter, we will see that perform-
ing valid statistical inference under this setting requires an understanding of
the marginal likelihood of the parameter given the privatized statistic.

A common and important task for statistical modeling is to perform indi-
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vidualized prediction. Statistical utility in this context is measured in terms of
the accuracy of the predictions about each individual’s feature as generated by
the model, assessed against the actual feature that the individual possesses.
The tension between privacy and utility is particularly acute in individualized
prediction, because both are formulated, hence measured, directly in terms
of the individual’s feature. We remark, however, that even if the predictive
model is trained subject to the differential privacy guarantee, it is still possible
to make accurate predictions about the individual’s class or response. Typical
situations in which this may arise are when the model can access other public
information (such as useful predictors of the individual) or common expert
knowledge. For example, if a scientific study shows a reliable connection be-
tween smoking and cancer, and it is publicly known that a person named Bob
is a chain smoker, one can infer from the study that Bob may develop cancer
with high probability. Note that this inference about Bob does not constitute
a violation of the differential privacy guarantee, even if it implies a high dis-
closure risk for Bob’s cancer status. Indeed, this inference can be reached even
if Bob is not part of the scientific study. We discuss the issue of privacy and
individualized prediction further in Section 1.4.

Statistical inference differentiates itself from other modes of learning by a
strong emphasis on the quantification of uncertainty. Statistical methodologies
are concerned with not only taming uncertainty as much as possible, but also
with truthfully measuring uncertainty in any given situation. In other words,
we try hard to learn, and at the same time stay honest about how much we can
and cannot learn. Ultimately, the utility of statistical inference is reflected in
the positive impact by the evidence-based decisions made in the downstream.
Any sacrifice that is made to statistical utility in lieu of privacy must also be
quantified within the same context.

1.1.2 The statistical meaning of differential privacy

Loosely speaking, the differential privacy requirement says that for two neigh-
boring databases that differ by one individual’s contribution, the probability
distributions of the privatized outputs are similar. This requirement poses a
constraint on the statistical information that the data product may contain.
This section offers several statistical interpretations of differential privacy, as-
sociating it with hypothesis testing, likelihood, and Bayesian inference. These
views help understand the impact of differential privacy under the most com-
monly employed statistical inference schemes.

The first and most straightforward interpretation of differential privacy is
that it poses a bound on the divergence between the two output distributions
relating to the two underlying neighboring databases. This perspective is most
commonly referenced in the computer science community, and offers a some-
what intuitive notion of privacy. If the output distributions are similar, as
measured in terms of some divergence, then it must be difficult to tell which
distribution the realized sample actually came from. This viewpoint has led
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to alternative notions of differential privacy, including Rényi differential pri-
vacy, concentrated differential privacy, and truncated concentrated differential
privacy [34, 19, 64].

That the two output distributions are difficult to tell apart can be for-
mulated with the language of statistical hypothesis testing. Specifically, dif-
ferential privacy amounts to requiring that, given the privatized output, any
hypothesis test attempting to discern which of the two databases with which
we began has bounded power as a function of the Type I error. [80] first noted
that differential privacy was equivalent to imposing a bound on the power of
any hypothesis test of whether an individual participated in the database or
not, based on the privatized output, and this perspective was further explored
by [51]. Recently, [26] use this viewpoint to propose a family of differential
privacy guarantees parameterized by the different choices of bounds on the
Type I and Type II errors. This hypothesis testing viewpoint shows what an
adversary is able to accomplish based on the privatized output, and formalizes
the “plausible deniability” afforded to the participating individuals. That is,
it is difficult to tell whether any of them participated in the dataset at all.

The classic ε-differential privacy can also be interpreted as imposing a
bound on the likelihood ratio between the distributions of outputs when us-
ing two databases differing in one individual. This view has implications on
both the testing and the estimation perspectives of statistical inference. As
the likelihood ratio statistic is known to be the most powerful test for dis-
cerning two simple hypotheses, this interpretation highlights the link between
differential privacy and hypothesis testing. On the other hand, the bound on
the likelihood ratio also indicates that an analyst’s likelihood function remains
similar when one person’s data is changed in the original database, where the
similarity is up to a factor of exp (ε). This means that ε-differential privacy
poses a bound (by ± exp (ε) fold, to be precise) on the Bayes factor, that is
the ratio between the posterior odds and the prior odds, harbored by the an-
alyst regarding whether an individual is included or excluded from the actual
database. Importantly, the bound holds regardless of the prior information
that the analyst may have, again limiting the extent to which anyone can
learn about the participation of the individual.

Note that differential privacy can only provide a relative guarantee to
an individual’s privacy, and does not serve as an absolute guarantee. The
differential privacy guarantee is only relative, in the sense that whether an
individual is present in the database or not, the resulting outcome does not
change much. However, as discussed in Section 1.1.1, it is still possible to make
accurate inference about the status of an individual based on the privatized
output. Specifically, the smoking and cancer example discussed there would
stand even if the individual in question is not present in the database at all.
From a Bayesian perspective, while differential privacy bounds the ratio of
the likelihood function whenever one individual’s data is changed, it does not
offer an absolute bound on the posterior distribution. [12] offers an extended
analysis on the bounds that ε-differential privacy imposes on the appropri-
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ate likelihood function and other key quantities in frequentist and Bayesian
inferences. Under mild conditions, these bounds are generally applicable to ar-
bitrary parameters, data generating models and priors, and are non-vacuous
in finite sample settings, shedding light on the limit of statistical learning from
ε-differentially private data products.

Finally, we remark that there is a deep connection between differential
privacy and robust statistics. Since differential privacy regulates the privacy
mechanism in such a way that it not depend too strongly on any one indi-
vidual’s data, it is related in essence to statistical robustness notions such as
the breakdown point and the influence function. [33] and [5] pointed out that
robust estimators can be easily modified to satisfy differential privacy. The
connection to robustness also allows for differential privacy to enable sequen-
tial data analysis via the reusable holdout [32], to avoid overfitting to the data
and to enhance research reproducibility.

1.2 Inference through the lens of formal privacy

In this section, we discuss the methodological elements of drawing statistical
inference from differentially private information. As we will see, good statis-
tical inference from a privatized output hinges crucially on the knowledge
about the probabilistic specification of its generation process. Therefore, the
transparent specification of the privacy mechanism is a prerequisite to reliable
inference, a point that we underscore at the outset.

1.2.1 The importance of transparent privacy

A great strength of differential privacy is that it is capable of providing se-
curity without obscurity. The privacy guarantee does not require the privacy
mechanism itself to be secret, and the mechanism can be safely published along
with the privatized output, with no additional threat to the confidentiality of
individuals belonging to the database. In fact, the transparent specification
of the mechanism is precisely what allows for the verification of its guarantee,
a fundamental premise that allowed for the flourishing literature on differen-
tial privacy mechanism design, which caters to a variety of use cases while
delivering better utility qualities. The reader is referred to Chapter [popular-
DP-mechanism] of the handbook for more examples.

From the statistical point of view, we say that a privacy mechanism is
transparent, if the conditional probability distribution of the privatized query
z, given the underlying database x, is fully known to the data analyst who
has access to z. We denote this conditional distribution as η (z | x).

The transparency of the privacy mechanism plays a crucial role in con-
ducting reliable statistical inference and uncertainty quantification based on
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its output [43]. The transparency property of differential privacy draws a stark
contrast to the philosophy of traditional statistical disclosure limitation, where
a privacy protection procedure (such as swapping or noise infusion) is typically
regarded as a secret and is not publicly disclosed. If the privacy mechanism is
not known, it poses various challenges to adequately analyzing the privatized
output. For example, it may be the case that the analyst’s intended model
parameter – otherwise identifiable – becomes unidentifiable with privacy pro-
tection, yet the analyst would not know how to ascertain that. The best the
analyst can do is to make assumptions, or guesses, about necessary aspects
of the privacy mechanism. In the case of swapping, these may include the
swap keys and swap rates. In the case of noise infusion, these may include the
distribution, scale, and dependence structure for the noise variables. If these
assumptions cannot be verified or supported by the curator’s documentation,
as often is the case with obscure privacy mechanisms, the statistical analysis
that ensues may well be inaccurate and potentially invalid.

Because the specifications of a differential privacy mechanism can be made
available to the data analyst, this information should and must be incorpo-
rated into the modeling procedure wherever possible. This would ensure the
correct propagation of the additional uncertainty introduced for privacy, and
the derivation of valid statistical inferences. For a well-specified differentially
private mechanism, it is possible to write down a full generative model for the
published privatized data conditional on the original confidential data. Fur-
ther assuming a sampling model for the unobserved original data, any noise
or perturbation due to privacy can be properly accounted for in the marginal
likelihood for the parameters of interest given the privatized output. This al-
lows for the appropriate accounting of errors, and is the foundation for valid
statistical inference based on privatized data. In what follows, we describe in
detail the analysis approach under transparent privacy.

1.2.2 Privacy mechanism and the marginal likelihood

In a statistical analysis task without privacy concerns, the analyst typically
specifies a model for the data that depends on the unknown parameters, and
possibly also any prior information they have. However, when a privacy mech-
anism is applied, the analyst no longer sees the original data, but only the
privatized outputs. At this point, the original data becomes missing data, or
latent variables in the analyst’s model.

Let fX (· | θ) be the model for the private data X depending on the pa-
rameter θ. As introduced previously, let η (· | x) be the privacy mechanism
through which the privatized data Z is probabilistically generated based on
the original data X = x. Then the marginal model for Z is

p (z | θ) =

∫
X

η (z | x) fX (x | θ) dx. (1.1)

This quantity is precisely the marginal likelihood of θ given only the privatized
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output Z, which was first identified in [81]. In the special case that the privacy
mechanism adds an independent noise to a statistic T (X), where the noise is
drawn from the distribution η (·), then (1.1) takes the special form

p (z | θ) =

∫
X

η (T (x)− z) fX (x | θ) dx =

∫
η (t− z) fT (X) (t | θ) dt, (1.2)

which we see is the convolution of the posited distribution of T (X) given θ,
and the noise distribution η. Many, but not all, differential privacy mecha-
nisms are independent additive mechanisms, with noise taking distributions
of Laplace, double geometric, Gaussian, t, and so on (e.g., [9, 68, 40]). On
the other hand, there are also many mechanisms that do not have an addi-
tive structure, for which η (z | x) remains in the more general form of (1.1).
These include the classic randomized response mechanism [79], the exponen-
tial mechanism [63] and the objective perturbation [58].

The marginal likelihood p (z | θ) is the foundation to the statistical infer-
ence problem using privatized statistics. It incorporates both the sampling
(or modeling) uncertainty about the parameter of interest θ, as reflected in f ,
and the uncertainty due to privacy, injected by the probabilistic mechanism
η. The marginal likelihood describes the sampling properties of z given θ,
guiding frequentist and likelihood estimation. Further combined with a prior
distribution on θ, one can also derive the Bayesian posterior distribution of θ
given z, that is

p (θ | z) ∝ π (θ) p (z | θ) ,

for the analyst’s choice of prior π (θ).
Note that the representation of the marginal likelihood in (1.1) involves an

integral over the entire space of possible input databases x ∈ X . This could
be a demanding task if no low-dimensional summary statistic or other types of
tractable simplification exists. As Section 1.2.3 will discuss, inference strategies
for privatized statistics are invariably designed around taming p (z | θ) in some
way, be it analytically, computationally, or approximately.

1.2.3 Inference strategies for privatized statistics

In the previous section, we established that the likelihood function of a popula-
tion parameter given a privatized statistic is the marginal likelihood function.
Computing the marginal likelihood function requires integrating over the orig-
inal dataset x, and can be potentially intractable when the dimension of the
dataset is large. This often requires the use of either sampling techniques or
approximation strategies, and sometimes a combination of the two.

Consider one of the simplest problems where each individual contributes
a single binary value, modeled as a Bernoulli experiment. In this case, the
marginal likelihood can be evaluated exactly. As the total number of “ones”
is a sufficient statistic, [7] showed that evaluating the marginal likelihood
only requires a single summation, which has running time that is linear in the
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(a) Histogram of x over the 10000 repli-
cates, along with the asymptotic distri-
bution (1.3), in red.
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(b) Histogram of x + Laplace (1/ (εn)),
with ε = .1, along with the asymptotic
distribution (1.4), in red.

FIGURE 1.1: Comparison of asymptotic approximating distributions in pri-
vate and non-private settings. Data are drawn i.i.d. from Bern (.5), with sam-
ple size n = 100, and 10000 replicates.

sample size. In the local model, [60] give conditions for the marginal likelihood
to be tractable when using the Gaussian mechanism.

In cases where the marginal likelihood cannot be computed directly, other
techniques are needed. It may be tempting to ignore the privacy mechanism, or
to apply traditional statistical asymptotics to approximate the sampling dis-
tribution of a differentially private statistic. These approaches are not entirely
unjustified. Because the noise introduced for privacy is often asymptotically
negligible compared to the error due to sampling (e.g., [71, 20]), the asymp-
totic sampling distribution of many differentially private statistics is the same
as their non-private counterpart, such as noted by [76, 36].

Unfortunately, while the noisy introduced for privacy is often asymptoti-
cally negligible, in finite sample sizes, it often results in inaccurate asymptotic
approximations [76]. In Example 1, we present a case based on [76], which
shows that standard asymptotic techniques can result in unacceptably poor
approximations when applied in the differential privacy setting.

Example 1 (Classical asymptotics with DP). Let X ∈ [0, 1]n be a sequence
of random variables drawn i.i.d. from a distribution F with known variance
σ2. The classical estimator of the mean µ of F is µ̂ = 1

n

∑n
i=1 xi, which by

the central limit theorem has the asymptotic distribution(√
n/σ

)
(µ̂− µ)

d→ N (0, 1) . (1.3)

We approximate the sampling distribution of µ̂ as N
(
µ, σ2/n

)
. To satisfy

privacy, note that µ̂ has sensitivity 1/n. Thus a simple mechanism to privatize
µ̂ is to add independent noise distributed as N ∼ Laplace

(
1
εn

)
. Then the

private output is µ̃ = µ̂ (X) + N , which satisfies ε-DP. Note that since N =
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Op (1/n), we have the same asymptotic distribution for µ̃:(√
n/σ

)
(µ̃− µ)

d→ N (0, 1) . (1.4)

Despite this asymptotic property, we see in Figure 1.1 that the normal ap-
proximation (red density) is considerably less accurate for the true sampling
distribution of µ̃ in panel (b) than that of µ̂ in panel (a).

It is worth noting that in non-private settings, a sample size of n = 100
is usually large enough for the central limit theorem to give good approxima-
tions. While the privacy noise is asymptotically negligible, it is not negligible
in finite samples. Example 1 emphasizes the need to explicitly incorporate the
privacy noise into the statistical inference procedure.

While traditional asymptotics are often not accurate enough in the pres-
ence of a privacy mechanism, there have been several works that incorporate
the privacy mechanism with traditional asymptotics, avoiding the problem
of Example 1 (e.g., [37, 77, 38]). In particular, [76] developed an alternative
asymptotic regime which, under certain conditions, produces approximations
for differentially private statistics that are at least as accurate as their non-
private counterparts.

A different class of approaches is based on the idea of producing sam-
ples from the marginal likelihood. Often the model for the private data is
a generative model, meaning that given a parameter value, it is relatively
easy to sample a new dataset. Furthermore, the privacy mechanism is fully
specified, and is usually designed to be easily sampled. This structure of the
privacy problem makes sampling from the marginal distribution of the priva-
tized statistic relatively easy. By viewing the original data as latent variables,
Markov chain Monte Carlo (MCMC) approaches can be used to sample from
the marginal likelihood [81, 16, 17, 50]. In addition, [42] shows that Monte
Carlo Expectation Maximization (MCEM) and approximate Bayesian com-
putation (ABC) can be used to produce samples that are exact with respect
to the marginal likelihood and the Bayesian posterior.

The ability to sample the differentially private statistic given a parame-
ter can also be used for parametric bootstrap inference. [36] show that this
approach gives accurate confidence intervals for a variety of problems, with
higher accuracy than asymptotic techniques. The parametric bootstrap has
also been used to approximate the sampling distribution in many private hy-
pothesis testing problems [37, 3]. [6] develop an alternative method to ap-
proximately sample conditional on a differentially private statistic provided
that it is asymptotically efficient. They show that this can allow one to test
certain hypothesis based on a differentially private statistic. [11] showed that
simulation-based inference can be used to produce confidence intervals and
hypothesis tests with guaranteed coverage/type I error for general parametric
models. Similar simulation-based inference methods can be used to de-bias a
privacy mechanism [45]; see Section 1.4 for a discussion on biases in privacy
mechanisms.
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Another computational technique that has been successfully applied to
the marginal likelihood is variational Bayesian analysis [52]. Variational tech-
niques are an alternative MCMC methods, which work with a non-asymptotic
approximation to the target distribution.

1.3 Methodologies for differentially private statistical in-
ference: an overview

When tackling the problem of statistical inference under differential privacy,
it is important to distinguish between the different modes of data access [49],
due to their distinct implications on the downstream inference task. For the
purpose of this chapter, two modes of data access are worth highlighting.
Under the query-based mode, the data curator is interested in performing the
statistical inference or in directly enabling it. In this case, the curator can
carefully choose which private statistics to evaluate, and design these queries
specifically for the statistical inference task at hand. For example, if we were
the disclosure avoidance team at Google, Apple, or the Census Bureau, we
would have the freedom to tailor our privacy mechanism to the statistical
questions that we want to answer.

In contrast is the dissemination-based mode. Here, the data analyst is
a separate entity from the data curator, who is entirely uninformed of the
analyst’s intent. The curator chooses what private statistics to release, without
knowing the statistical questions the data analyst would like to pursue or the
models they would like to fit. The curator may anticipate certain popular use
cases, but cannot foresee all possible ways in which the private statistics will
be analyzed. In this case, the analyst has no direct control over the privacy
mechanism, and is left to perform statistical inference given the private output
as provided by the curator. For example, if we were a team of social scientists
interested in analyzing the Census Bureau’s differentially private public data
products, we would be situated in the dissemination mode.

Every technique developed under the dissemination mode is also applicable
to the query mode. While the converse is not generally true, there have been
several interesting works which showed that optimal differential private infer-
ence in the query mode often coincide with techniques from the dissemination
mode.

We remark that the query vs. dissemination modes should not be confused
with the central vs. local privacy models. The distinction between the central
and the local models concerns the differential privacy guarantee and the na-
ture of the privacy algorithms. On the other hand, the distinction between
the query and the dissemination modes of data access concerns whether the
analyst has the freedom to choose their own private queries, or are left to work
with the private queries chosen and computed by someone else. It is possible
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to be in either the query or dissemination modes, regardless of whether the
privacy model is central or local.

In addition, a database may offer more than one mode of access to its
users. For example, the tiered access model would allow query-based access by
certain approved data analysts and dissemination-based access by the general
public. This hybrid approach is seen as a viable model of data access in many
use cases within official statistical agencies [67, 47].

1.3.1 Inference under dissemination-based data access mode

The simpler of the two modes of data access is the dissemination mode. In
this case, the analyst has no control over the privacy mechanism, and in that
sense, their work is of a reduced degree of complexity. Here, the analyst is given
a differentially private output, and is tasked with performing the statistical
inference of interest based on it.

One approach that gives reliable statistical inference under the dissemi-
nation mode is the parametric bootstrap, which is also arguably the simplest
blackbox approach. Regardless of the differentially private mechanism used,
as long as the mechanism is fully specified, it allows the analyst to sample a
new differentially private statistic given a parameter estimate. This is the ba-
sis for the parametric bootstrap inference. [36] show that this approach gives
accurate confidence intervals for exponential families and regression models.
A more complicated sampling approach to inference is simulation-based in-
ference, which [11] showed can give confidence intervals and hypothesis tests
with provable coverage.

When the privacy mechanism admits an explicit expression of the condi-
tional distribution of the private query given the confidential one, [42] shows
that exact samples from the posterior distribution can be obtained by a mod-
ified approximate Bayesian computation (ABC) scheme. This approach in-
volves sampling from the data generating model, and accepting a sample when
it gives a synthetic statistic that is close to the observed private statistic, where
closeness is assessed using to the conditional distribution.

In a local model setting where noise is added directly to the values in the
original dataset, measurement error models can be employed to perform cor-
rect inference on the parameters. Examples of methods that fit in this frame-
work are randomized response and post randomization method (PRAM),
which perturb the data on a record-by-record basis [44]. Measurement er-
ror models have been successfully used in this setting to perform Bayesian
inference on regression [41] and small area estimation [66]. Similarly, the EM
algorithm can be applied to obtain unbiased parameter estimates when the
data was privatized by PRAM [82].

The marginal likelihood perspective as described in Section 1.2.2 is gener-
ically applicable in the dissemination mode. This is first noted in [81], where
they use MCMC methods to sample from the marginal posterior distribu-
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tion in a logistic regression. [52] apply variational methods to work with the
posterior distribution in a näıve Bayes classifier.

While we discussed earlier that traditional asymptotic techniques do not
necessarily deliver valid finite sample statistical inference in differentially pri-
vate problems, there have been some works that successfully incorporate the
privacy noise into the asymptotic approximation. [74] is one of the earliest pa-
pers on statistical inference for differential privacy. They show that in a dataset
modeled as independent Bernoulli experiments, with Laplace noise added to
the sum of the observations, the sampling distribution can be approximated
either with the convolution of a Gaussian and a Laplace random variables,
or with a normal approximation with an inflated variance. They use these
approximations to derive sample size calculations based on the differentially
private outputs, and to perform tests of the population proportion and tests
of independence where Laplace noise is added to the cells of a contingency
table. [37] develop alternative differentially private tests for independence and
goodness-of-fit tests for contingency tables, when noisy counts are observed.
They offer both asymptotic and Monte Carlo methods for calibrating the Type
I errors. [77] discuss an asymptotic framework for approximating the sampling
distribution of independence and goodness-of-fit test statistics based on noisy
data, which are further developed in [76].

1.3.2 Inference under query-based data access mode

Under the query-based data access mode, the data analyst has the ability to
design the differentially private statistical queries that will be evaluated on
the confidential database. This allows the analyst to tailor the queries to the
statistical task of interest.

Point estimation is a central statistical task, one that has received a great
amount of attention from the differential privacy community. Often, it is the
case that a successful point estimate can be derived without considering the
marginal likelihood. For example, [71] shows that under mild assumptions, effi-
cient differentially private estimators can be produced by using the subsample-
aggregate technique.

In the case of count data, [40] show that for a wide array of utility func-
tions, the optimal privacy mechanism can be expressed as a post-processing
of a single differentially private statistic, using the discrete Laplace or the geo-
metric mechanism. In a similar way, [7] consider all possible private hypothesis
tests (that is, regardless of their test statistic) for a Bernoulli data hypothe-
sis, and show that the uniformly most powerful differentially private test for
Bernoulli data can be expressed as releasing a noisy summary statistic, and
basing the test on the resulting marginal likelihood. This result indicates that
while the analyst has more freedom under the query-based data access mode,
especially in terms of the choice of summary statistics, the actual inference
is often done in the same manner as under the dissemination-based data ac-
cess model. These results are extended to other optimal inference problems
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for Bernoulli data, such as confidence intervals and confidence distributions,
which are all products of post-processing of the same noisy summary as in [8].
These results are further extended to a broader class of differential privacy
definitions, called f -DP [26], in [9].

For other problems, having control over the sensitivity of the differentially
private test statistic is necessary to optimize the performance of a privatiza-
tion procedure. [83] measure the sensitivity of the χ2 statistic for contingency
tables in the application to a genome-wide association study (GWAS) study.
They show that the differential privacy requirement is satisfied by adding noise
directly to the χ2 statistic. Similarly, [22] and [10] measure the sensitivity of
several non-parametric test statistics for comparisons of groups or paired data.
Them then add noise to satisfy the differential privacy requirement, and use
Monte Carlo samples or asymptotic approximations to evaluate the Type I
errors. [21] show that for simple hypothesis tests, a differentially private test
based on a noisy clamped likelihood ratio test achieves optimal sample com-
plexity. [15] develop a differentially private hypothesis test for the significance
of regression coefficients, based on a truncated t-statistic. [70] develop hypoth-
esis tests and confidence intervals for linear regression, based on the Gaussian
Johnson-Lindenstrauss Transform and the Analyze Gauss algorithm [35]. [3]
show that for simple linear regression, noised and clamped sufficient statistics
can be processed to test the significance of regression coefficients. In the lo-
cally private setting, [65] develop both frequentist and Bayesian inference on
causal treatment effects in controlled experiments. So long as the private test
statistic is asymptotically efficient for a null model, the methods of [14] and [6]
can be used to perform approximate hypothesis tests, by using approximate
co-sufficient samples. [6] demonstrate the efficacy of this differentially private
testing procedure on the test of two proportions. [9] also tackle the problem
of testing two proportions in the framework of f -DP, directly computing the
sampling distribution by convolution via characteristic functions.

One of the fundamental statistical vocabularies for estimating and com-
municating uncertainty is the confidence interval. While there have been a
few notable examples of producing valid confidence intervals in the dissemi-
nation model, it is more common to develop a customized query for this task.
[28] develop several confidence interval mechanisms for normally distributed
data, based on the parametric bootstrap, and [54] develop a finite-sample ac-
curate confidence interval for normally distributed data, where the analysis
is intricately linked with the queries asked. [27] develop the non-parametric
differentially private confidence intervals for the median of one-dimensional
data, using either the exponential mechanism or a private cumulative distri-
bution function (CDF) estimator. The confidence intervals are derived using
inequalities specific to the mechanisms at hand. [23] combine the techniques of
subsample-aggregate, bag of little bootstraps, and CoinPress [18] to privately
estimate a sampling distribution, producing unbiased estimates and confi-
dence intervals with coverage that holds with high probability. Their method
is based on the asymptotic theory behind the bootstrap. [78] showed that



18 Statistical Inference and Differential Privacy

by incorportating the randomness of the nonparametric bootstrap into the
privacy mechanism, multiple private releases can be given with a compara-
ble privacy cost, while also enabling confidence intervals. [75] develop dif-
ferentially private confidence intervals for output and objective perturbation
mechanisms for empirical risk minimization, based on a Taylor expansion of
the risk function. Besides the initial differentially private estimate, additional
privacy budget must be allocated to estimate the Hessian and the covariance
matrix.

There have also been a few notable works which approximate the posterior
distribution based on a differentially private release, for specific models and
private statistics. [16] develop a method which combines the central limit theo-
rem and Gibbs sampling to perform private posterior inference on exponential
family models, assuming that the private release is a noisy sufficient statistic.
[17] extend this approach to posterior inference for Bayesian linear regression.
In the setting of generalized linear models, there often does not exist a low
dimensional sufficient statistic. [61] propose the use of privatized moments
to approximate the differentially private posterior distribution using Normal
approximations. [50] propose a general MCMC scheme that targets the pri-
vate posterior distribution without approximation, applying it to a log-linear
model and linear regression.

1.4 Challenges

We describe a few current challenges in the literature of statistical inference
under differential privacy.

1.4.1 Disclosure risk and individual feature prediction

As discussed in Section 1.1.2, pure differential privacy bounds the probability
ratios of every event induced by the privacy mechanism, when it is applied
to a pair of neighboring databases that differ by the information of a sin-
gle respondent. As a result of this construction, a differential private query
bounds the probabilistic disclosure of the individual’s information through
the privatized query, relative to all the auxiliary information that the adver-
sary may already possess of the individual as well as the other entries in the
database. Using Bayesian terminology, this means that if we denote πX (x) as
an agent’s prior distribution about the individual X, and z an ε-differentially
private query from a database containing X, we would have the guarantee
that their posterior, πX (x | z), cannot change by more than exp (±ε)-fold,
had z been calculated from the same database but without X.

This interpretation is called the posterior-to-posterior semantics of differ-
ential privacy [25, 55]. The posterior-to-posterior semantics is counterfactual
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in nature, because it invokes a comparison between two posterior probabil-
ities based on z, one with and one without the participation of individual
X, where both cannot be simultaneously true. An alternative interpretation,
called the prior-to-posterior semantics, is concerned with the maximal change
between the prior probability πX (x) and the posterior probability πX (x | z),
also known as the (absolute) disclosure risk of individual X [30, 31, 62].
[12] show that under ε-differential privacy, this change cannot be more than
exp (±εd)-fold, where d is the maximal distance (measured according to some
metric) between two permissible and connected databases from which z is
obtained, so long as the prior is proper. For a non-dogmatic prior, this result
sketches non-vacuous bounds on the posterior probabilities, even though in
general these bounds are wider for larger databases than for smaller ones.
Importantly, this means that the disclosure risk may still be high even when
z is provably differentially private.

If the query release is duly privatized, when would the disclosure risk still
be high? The adversary may have access to reliable auxiliary information
about the individual, such as public records, common knowledge, and histori-
cal data. They may also have a good grasp of the inter-dependence between the
individual and the rest of the respondents constituting the database. Taken
together, this auxiliary information can be used to construct an informative
model about X from z, in the sense that the posterior distribution πX (x | z)
is concentrated on one or a small number of possible x values. Consequently,
the disclosure risk of the individual can be high for certain outcomes, even if
the query z is extremely, or even perfectly, private.

The relative nature of the differential privacy guarantee suggests that we
cannot preclude an accurate prediction of sensitive individual features using
statistical modeling based on provably private queries; see [56] for a recent
example. A high predictive accuracy may be achieved if the agent knows how
to construct an effective model through other means. This may happen, for
example, if the target population is highly homogeneous such that a baseline
prediction is already accurate for the individual. It may also happen if, even
without the private query input, the prior distribution πX (x) is already highly
informative.

While an informative posterior or predictive probability of the individual’s
features does not constitute a violation of differential privacy, they are, in a
sense, still a threat to the individual’s confidentiality due to the elevated dis-
closure risk. Unfortunately, privacy mechanisms cannot help limit the impact
of information sources that already exist, or be derived from those that are.
Nevertheless, the assessment of the actual disclosure risk, rather than the pri-
vacy guarantee itself, can be of vital importance for many use cases. We refer
the reader to Chapter [disclosure-risk] of this book for an extended discussion.
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1.4.2 Invariants and logical constraints

Official statistical agencies curate data in accordance with legal and policy
mandates. Sometimes, this means that certain aspects of the data products
must be released exactly without privacy error, or that they must satisfy
certain logical constraints to maintain internal consistency. For example, to
release the 2020 U.S. Decennial Census under differential privacy, the Census
Bureau observes a set of invariants [4], such as population totals at the state
level, total housing units and group quarter facilities at the block level, and so
on. The population count of a higher geographic level must be equal to those
tabulated from its lower-level constituents. In addition, all privatized counts
must be non-negative. If the counts were simply noise-infused and tabulated,
the resulting data product may well be inconsistent with the required invari-
ants and constraints. To enforce these invariants, something must be done
after, or in lieu of, the straightforward noise infusion mechanism.

Unfortunately, differential privacy and invariants do not mingle well. A
commonly used method to impose invariants on a differentially private noisy
query is post-processing using distance minimization, as employed by the Cen-
sus DAS TopDown algorithm [1]. The underlying optimization procedure is
highly data-dependent, and the statistical implication is two-fold. First, this
approach may introduce systematic bias into the query output that is difficult
to quantify. For example, it has been observed that the TopDown algorithm
tends to associate larger counts with negative errors, whereas smaller counts
with positive errors, when the total count is held as invariant [84]. Second,
the analytically intractable and computationally complex procedure sacrifices
the transparent probabilistic description of the privacy mechanism, leading to
challenges in the statistical inference task based on these data, as Section 1.2.1
discusses.

The literature has seen some efforts to design privacy mechanisms that
integrate invariants and constraints as part of the process. [13, 48] discuss
the design of privacy mechanisms that maintain internal logical consistency
in the multi-dimensional output. [39] and [24] discuss the design of privacy
mechanisms that obey linear invariants that are exact statistics of the confi-
dential data, warning about the limited extent to which they protect privacy
relative to the classic notion of differential privacy. [69] instead use the Puffer-
fish framework [57] as an alternative method of quantifying partially private
data. From a statistical point of view, these designs better preserve the proba-
bilistic transparency of the generative process of the query release, facilitating
downstream statistical analysis and the reliable quantification of uncertainty.

1.4.3 Unbounded query sensitivity and clamping

One of the simplest statistics to privatize is a count, which is a sum of binary
data points. Specifically, each individual’s contribution to the sum is either one
or zero, hence the sensitivity of the counting query is naturally bounded. In
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this case, directly adding noise with an appropriate scale to the query achieves
formal privacy. This property extends to other data with a bounded domain,
such as in Example 1. In these cases, the privatized output is unbiased, since
the additive noise has an expectation of zero, and the original statistic is not
altered in any way.

However, many statistics and data structures do not have a bounded sen-
sitivity. Consider for example the sample average, standard deviation, or re-
gression coefficients calculated based on real-valued data. Theoretically, it is
possible for an individual’s information to contribute an infinitely large change
to the value of the statistic, hence no additive noise with a finite scale would
suffice for differential privacy. In any practical setting, however, we do not re-
ally expect to observe data values that are infinitely large. In survey statistics,
top-coding or the censoring of data values above a certain upper bound, is fre-
quently practiced. For example, the Current Population Survey top-codes an
individual’s hourly earnings such that the annualized wage lies between $0 and
$150k inclusive [72]. All observations that exceed the upper limit are adjusted
downward to $150k. In differential privacy, the same procedure is tradition-
ally employed as part of data pre-processing, known as clamping, to render
all data values inside a bounded interval chosen in advance. For a dataset of
size n that is top-coded (or clamped) as above, the average annualized wage
would have a sensitivity of $150k/n.

Because clamping systematically alters the statistic calculated from the
underlying confidential data, it may introduce bias into the differentially pri-
vate estimate, even if the additive noise itself is unbiased. In fact, there exists a
bias-variance trade-off in the choice of the clamping thresholds. Since noise is
scaled proportionally to the length of the clamping interval, choosing clamping
thresholds that are too wide introduces excessive noise. On the other hand,
as the thresholds become narrower, more data are systematically altered, and
the bias becomes larger.

Besides adding noise directly, there are more sophisticated privacy methods
that work by privately minimizing a loss function, such as the log-likelihood
function. These methods include the exponential mechanism or objective per-
turbation. In this setting, the sensitivity of the loss function may still be
unbounded, unless the data is first clamped. A workaround is to modify the
score by applying a bounded function, as is often used in robust statistics.
While this can mitigate the dramatic effects of clamping, altering the score
functions often still results in some bias.

A clever approach to the problem of choosing the clamping threshold is
CoinPress, proposed in [18]. This algorithm follows a two-step procedure.
First, the method uses a proportion of the privacy budget to iteratively esti-
mate the range of the data before clamping. It then uses the estimated range
to choose a well-informed clamp before adding noise. Similar ideas have been
used in [54] and [71], where they use a quantile approach to approximately
estimate the support of the data before clamping and adding noise. This two-
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step approach can mitigate the worst effects of the clamping, but does not
eliminate the bias completely.

Unfortunately, except in the simplest of settings, some form of bias is typi-
cally introduced by the differential privacy procedure, either through clamping
the data or altering the loss function. There may be room for improvement
on the mechanism design front. On the other hand, the bias can also be ad-
dressed using statistical post-processing techniques, such as those discussed in
Section 1.2.3. For example, parametric bootstrap and other simulation-based
inference methods can reduce the bias of an estimator to O(0) (that is O(np)
for all p) [45, 46]. [11] show that simulation-based inference can account for the
bias due to clamping, enabling valid confidence intervals and hypothesis tests.
The marginal likelihood can also be used to derive the maximum likelihood
estimator based on the private output. For example, [53] use this approach to
derive the differentially private MLE for the β-model on network data.

1.4.4 Identifiability, Estimability, and Consistency

In practical data analysis, most statistical models that we employ are identi-
fiable by design. A model is called identifiable, if f(· | θ) = f(· | θ′) implies
that θ = θ′. In other words, different parameters result in different models.
If a model is identifiable, then given enough data, it is possible to perfectly
identify the true parameters that generated the model. On the other hand, if
a model is non-identifiable, then no matter how much data we have, we will
never learn the true parameters.

There is an interesting phenomenon in privacy that even supposing the
original model f(x | θ) is identifiable, and the privacy mechanism η(z | x)
is known, it may be that the marginal model for Z, p(z | θ) is not identi-
fiable. Under the dissemination mode, this can easily happen if none of the
privatized statistics are informative about the particular parameters of inter-
est. For example, if the model aims to capture the correlation between two
groups, the parameter cannot be well-identified if only the marginal count for
either group is released. Under the query-based mode of access, it still may be
a challenge to choose an appropriate privatized statistics to ensure that the
model is identifiable.

A related, but distinct, concept to identifiability is estimability. A param-
eter is estimable if there exists an unbiased estimator for it. There exists non-
identifiable models which have estimable parameters. For example in classic
linear regression, if two or more of the predictor variables are collinear, the as-
sociated regression coefficients become aliased and non-identifiable. However,
functions of the coefficients, such as the fitted values of the response variables,
may still be estimable. On the other hand, there also exists identifiable models
which have inestimable parameters. For example, suppose that the output of
a privacy mechanism is an estimate of the regression coefficients. The distri-
bution of this differentially private estimator depends on σ2, the scale of the
idiosyncratic error in the regression model. However, based only on a single
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privatized regression coefficient estimator, there is no unbiased estimator for
σ2. In this case, σ2 is identifiable but not estimable.

We have already discussed the possibility of bias and inconsistency in dif-
ferentially private estimators, which may arise with invariants, constraints,
and clamping. The inconsistency of a particular differentially private estima-
tor should not be confused with the lack of estimability of the parameter. If
a parameter is not estimable, there may not exist a consistent differentially
private estimator for it. However, it may still be the case that some function
of the differentially private estimator gives a consistent estimate of the param-
eter. For example, when using truncation, the truncation parameter must be
carefully incorporated in the asymptotic regime to ensure consistency [59]. So
long as the distribution of the inconsistent estimator changes as the parameter
varies, a consistent estimator may be possible [45].

1.5 Discussion

Statistics is the mathematical science of understanding uncertainty, and incor-
porating uncertainty into the expression of scientific knowledge, whatever the
source may be. If there is uncertainty in the data collection method, missing
data, or if the observed data are contaminated by measurement errors, statis-
ticians have found it crucial to include these aspects of uncertainty into the
model, and propagate them through the statistical analyses. The randomness
introduced by a privacy mechanism is no different than these other sources
of error. Except that in the case of privacy, we are fortunate enough to be
able to know the exact conditional distribution of the privatized output given
the original dataset, a property that is usually not enjoyed by measurement
error and missing data problems. It is the transparency of the probabilistic
characteristics of the privacy problem that allows us to express the marginal
likelihood of the privatized query precisely as a convolution, integrating over
the latent space of databases. While this likelihood is often intractable, there
are already a suite of computational and theoretical tools to perform valid
statistical inference based on the privatized output.

There is plenty of room for future work. Many current inference techniques
are tailored to a specific model, privacy mechanism, or statistical task. The
development of general purpose methods – computationally and practically
accessible ones – can greatly help data users to perform valid statistical in-
ference. They are important to ensure that differentially private data releases
are properly understood.
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