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Course Description

Differential privacy (DP) has emerged as the leading framework for formal privacy pro-
tection and is widely adopted by tech companies such as Apple, Google, and Microsoft, as
well as by the US Census Bureau. DP introduces randomness into statistical procedures to
obscure the contribution of any individual in a dataset, making it difficult to identify spe-
cific information. Key questions in the field of privacy include: (1) How should privacy be
defined, and what properties should a privacy definition have? (2) How can algorithms be
designed for different tasks to ensure privacy guarantees are met? (3) Once a randomized,
privacy-preserving statistic is produced, how can we incorporate this randomness to perform
valid statistical inference?

In this course, we will explore differential privacy and address each of these questions.
We will begin by examining the essential properties an algorithm must possess to avoid being
“blatantly non-private.” We will then present differential privacy as a formal framework for
privacy preservation. We will derive several key properties of the DP framework and develop
general-purpose DP mechanisms. Additionally, we will study extensions and variations of
differential privacy, including local DP, approximate DP, concentrated DP, Renyi DP, and f -
DP. Lastly, we will consider methods for performing valid statistical inference on privatized
data.
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1 Introduction and Prerequisite

1.1 Motivation

In 2006, Netflix launched the Netflix Prize, an open competition to develop the best movie recom-
mendation algorithm based on a user’s past movie ratings and the dates those movies were watched.
To protect privacy, all personally identifiable information (PII) was removed from the database.
However, on IMDb, user ratings are publicly accessible and can serve as a unique identifier for indi-
viduals. To fully anonymize this data, one would need to remove all ratings and dates, which would
effectively result in the complete destruction of the dataset.

Differential privacy (DP) is a guarantee made by the data holder or curator to the data subject,
ensuring that their privacy is preserved regardless of the availability of other studies, datasets, or
information sources. DP allows confidential data to be made available for analysis without requiring
data usage agreements, data protection plans, or restricted access.

1.1.1 The Picture of Privacy

To formalize Differential Privacy, we consider the following cases:

• (Fundamental Law of Information Recovery) Overly accurate answers to too many questions
(statistics) will destroy privacy in a speculated way.

– The goal of DP is to postpone the inevitable loss of privacy as long as possible.

• (Paradox of Privacy) There are two extremes: perfect level of privacy and perfect accuracy.
We want to learn nothing about an individual yet learn useful information about a population.

Example 1.1 (Insurance Premiums). Suppose that a medical database shows that smoking causes
cancer. Learning this, an insurance company may raise premiums for smokers.

Question 1.1. Has the smoker (that is not in the dataset) been harmed by the analysis?

Ans: Maybe yes, because his premium has become more expensive. On the other hand, it could
help him reversely: realizing smoking is unhealthy, he may quit smoking .

Question 1.2. Has the smoker’s privacy been violated?

Ans: Certainly more is known about the smoker than before, but his information was not leaked.
But this is not going to be considered as a privacy violation in DP.

DP says that the privacy was not violated because the impact on the smokers is the same
whether or not he was in the study. It is the conclusion from the study that affected the
smoker, not his presence or absence in the data set. DP ensures that the same conclusions are
reached whether or not any particular individual opts in or out of the dataset.

Example 1.2 (Target Online Shopping Recommendation). A pregnant teenager started buying
items such as prenatal vitamins. The platform now recommends similar or relevant items based on
her purchase history. Viewing the items being recommended to the teenage girl, her parents could
find out that she is pregnant.

4



DP Notes Introduction Awan

1.1.2 Privacy-Preserving Data Analysis

There are some issues with privacy-preserving data analysis.

• Data cannot be fully anonymized while remaining useful.

– The richer the data, the more useful it is. In general, more attributes, individuals, etc.
lead to a more useful dataset.

– In fact, one can identify an individual by just a few key features; for example: zip code,
sex, date of birth, etc.

• Re-identification of ‘anonymized’ records is not the only risk.

– If a record is tied to an individual, they could have compromising information. Instead, we
could publish summary statistics of a dataset that do not merely pertain to an individual.

– Simply knowing an individual is or is not in a data set could be harmful; for example, a
teenage girl is categorized as pregnant or not.

• Questions on large sets are not safe.

– Questions on large sets can be combined in differential attack; for example, suppose
Mr. X is known to be in the database. By taking the difference of the following two
questions, we could extract Mr. X’s sickle-cell trait.

1. What is the number of people with sickle-cell trait?

2. What is the number of people with sickle-cell trait and are not named Mr. X?

• Query/Question/Statistic auditing is problematic.

– Early ruling out questions that could compromise privacy is difficult, especially when it
is the combination of pieces of information that causes privacy violation later on.

– Refusing to answer a question may also cause private information leakage; for example,
One refuses to say if he supports the new president.

• Summary statistics are not safe.

– Differential attack can be carried out as we discussed above.

1.2 O-notations

The big-O and little-o notations help us reason about whether the amount of noise an estimator/s-
tatistic has is on the desirable order/rate. Let f : R→ R and g : R→ R+.

Definition 1.1 (Big-O). f(x) = O(g(x)) if there exists M > 0 and x0 ∈ R such that |f(x)| ≤
Mg(x) for all x ≥ x0.

[1]

[1]In computer science, we are usually only interested in f, g : N→ R+.
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We think of f(x) = O(g(x)) meaning that asymptotically the rate of f is bounded by the rate
of g, i.e. |f | ≤ g asymptotically up to constants.

Definition 1.2 (little-o). f(x) = o(g(x)) if lim
x→∞

f(x)

g(x)
= 0.

We think of f(x) = o(g(x)) as ”roughly f < g by much.”

Definition 1.3 (Big-Ω). f(x) = Ω(g(x)) iff g(x) = O(f(x)). So, f is lower bounded asymptoti-
cally by g, i.e. f ≥ g asymptotically.

Definition 1.4 (Big-Θ). f(x) = Θ(g(x)) if f(x) = O(g(x)) and f(x) = Ω(g(x)), i.e. f is
bounded below and above by g asymptotically.

Definition 1.5 (Little-ω). f(x) = ω(g(x)) iff g(x) = o(f(x)), i.e. f > g by much.

Of these notations, O and o notations are the most important.

Remark 1.1 (Tips). When working with o, O, Θ, Ω, and ω,

• If f(x) is the sum of several terms and one of the terms has the largest growth, then others
can be omitted.

• If f(x) is the product of several factors, any constants (not depending on x) can be omitted.

Example 1.3.

1. f(x) = 6x4 − 2x3 + 5 then f(x) = O( x4︸︷︷︸
simplest expression possible

).

2. log log x = o(log(x)) because by L’Hospital’s rule,

lim
x→∞

log log x

log x
= lim

x→∞

1
x log x

1
x

= lim
x→∞

1

log x
= 0

1.3 O in Probability Notation

When working with random variables, it is also helpful to have an “o” notation. Let (xn)
∞
n=1 be a

sequence of r.v.s and (an)
∞
n=1 be a sequence of positive real values (constants).

Definition 1.6 (Small op). We write Xn = op(an) to mean

Xn

an

p−→ 0 (convergence in probability)

Equivalently, we can write
Xn

an
= op(1); more precisely,

yn = op(1) ⇐⇒ yn
p−→ 0

⇐⇒ lim
n→∞

Pr[|yn| ≥ ε] = 0 for all ε > 0

6
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Definition 1.7 (Big Op). We write Xn = Op(an) as n → ∞ to mean that
Xn

an
is stochastically

bounded, that is,

∀ε > 0, ∃M > 0 and N > 0 s.t. Pr
[∣∣Xn/an

∣∣ > M
]
< ε for all n > N

Example 1.4 (Theorem 14.4.1, Discrete Multivariate Analysis, Bishop et al. [2007]). If (Xn)
∞
n=1 is

a sequence of r.v.s each with finite variance, then

(Xn − E[Xn]) = Op

(√
Var(Xn)

)
Moreover, if (an) is a sequence such that a−2

n Var(Xn)→ 0, then by Chebyshev inequality,

Pr
[
a−1
n

∣∣Xn − E[Xn]
∣∣ ≥ ε

]
≤ a−2

n Var(Xn)

ε2
→ 0

Therefore, a−1
n (Xn − E[Xn])

p−→ 0, i.e.

Xn − E[Xn] = op(an)

Definition 1.8. We will also write

Xn = Ωp(an) ⇐⇒
an
Xn

is stochastically bounded

Xn = ωp(an) ⇐⇒
an
Xn

p−→ 0

Xn = Θp(an) ⇐⇒ Xn = Op(an) and Xn = Ωp(an)

Theorem 1.1 (Central Limit Theorem). Let (Xn) be a sequence of i.i.d. r.v.s with E[Xi] = µ
and Var(Xi) = σ2 <∞, then

√
n(Xn − µ)

d−→ N
(
0, σ2

)
.

In Op notation, √
n(Xn − µ) = Op(1)

since any distribution is stochastically bounded. This implies Xn − µ = Op

(
1√
n

)
︸ ︷︷ ︸

statistical/sampling/estimation error

.

Remark 1.2. In fact, Xn − µ = Θp

(
1√
n

)
.

Corollary 1.1 (Consistent Estimators). Many estimators θ̂(Xn) for Θ (e.g. MLE) satisfy

θ̂(Xn)− θ = Op

(
1√
n

)
,

which is called an
√
n-consistent estimator.

Remark 1.3. In DP, we want the added noise to be at most op(
1√
n
) such that it does not interfere

with the sampling error Op(
1√
n
). This is the least acceptable rate of noise.

7



DP Notes Blatant Non-Privacy Awan

2 Blatant Non-Privacy

The main reference for this chapter is Dinur and Nissim [2003].

This was in 2003-2004 when people were coming up with notions of privacy. These notions were
later used to develop DP. We start with the notion of ”blatant non-privacy.” The goal was to agree
on something that is definitely a privacy violation.

Here are some motivating questions:

1. How inaccurate must responses be to not completely destroy privacy?

• If we are able to recreate all records in a dataset, this is definitely not private.

2. How does that answer to 1. depend on the number of queries?

Example 2.1 (A simple abstraction). Let us consider as follows:

• Each person has a single bit of information, either 0 or 1. Hence, the database d = (d1, · · · , dn)
with di ∈ {0, 1}.

• An attacker picks a subset S ⊆ {1, 2, · · · , n} and asks (queries) how many 1’s are in the
rows S of d. Denote A(S) be the correct answer.

• For an arbitrary privacy mechanism, call r(S) the randomized response, which approximates
A(S) and the error of one query is E(S, r(S)) = |A(S)− r(S)|.

To achieve privacy, we would want the error to be non-trivial.

Definition 2.1 (Blatantly Non-Private). A mechanism is blatantly non-private if for every
possible database d, the adversary can construct a candidate database C that agrees with d
on all but o(n) entries, i.e. ∥C− d∥0 = o(n)a. That is, the proportion of correctly recovered
entries goes to 1.

aCan be L1-norm as well

If Rn is the number of correct entries, then Rn

n
= n−o(n)

n
→ 1. This is considered blatantly

non-private. Therefore, avoiding blatantly non-private is a low bar for a privacy mechanism.

Remark 2.1. The adversary need not know which entries are correct or not. If they did know which
entries were correct and which were incorrect, they could recover the full dataset by flipping the bits
of the incorrect entries.
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Theorem 2.1. Let r be a mechanism on a database d with distortion bounded by E, i.e.
|r(S) − A(S)| ≤ E for all S and any runs of r, then there exists an adversary that can
reconstruct d to within 4E positions (entries).

Proof of Theorem 2.1. The attack is as follows:

1. (Estimate the number of 1’s on all subsets and can get r(S) for all S ⊆ [n] := {1, ..., n})

2. (Rule out all ”distant” or incompatible datasets)

For each candidate C ∈ {0, 1}n, if there exists S ⊆ [n] such that

∣∣∣∣∣∣
∑
i∈S

Ci − r(S)

∣∣∣∣∣∣ > E, then

rule out C. Output the first C that is not ruled out.

Note that d can never be ruled out, so the attack will output some C. We now argue that C and
d differ by at most 4E entries.

Call I0 = {i | di = 0} and I1 = {i | di = 1}. By construction of C, consider the error∣∣∣∣∣∣r(I0)−
∑
i∈I0

Ci

∣∣∣∣∣∣ ≤ E,

and by assumption ∣∣∣∣∣∣r(I0)−
∑
i∈I0

di

∣∣∣∣∣∣ ≤ E.

By triangle inequality, C and d differ in at most 2E entries among I0 coordinates. Similarly, C and
d differ in at most 2E entries on I1. Therefore, C and d differ at most 4E entries. ■

Proposition 2.1. To avoid blatant non-privacy, error (with all 2n queries) E must be Ωp(n) .

Question 2.1. What if we limit the attack to O(n) queries?

If we view the database as a random sample, the each query A(S) is a binomial r.v. A(s)
d∼

Binom(n, p) for some p, then
A(s) = np+Θp(

√
n)︸ ︷︷ ︸

sampling error

To have a reasonably accurate output r(S), we would like (best-case) the mechanism error to be
smaller, i.e.

∣∣A(S)− r(S)∣∣ = op(
√
n). The next result shows when the error is o(

√
n) and the

attacker asks O(n) queries, we still cannot avoid blatant non-privacy [Dinur and Nissim, 2003].

Theorem 2.2. Let η > 0 and at least
1

2
+ η questions have error less than α(n) > 0. Then

there is an attack using O(n) questions to reconstruct the database in all but

(
2α(n)

η

)2

entries.

9
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Basically, it is saying that there is an attack using O(n) questions with error at most (2α(n)/η)2.

Example 2.2. If α(n) = o(
√
n) in Theorem 2.2, then the number of wrong positions is(

2α(n)

η

)2

=
4(o(
√
n))2

η2
= o(n)

and we have blatant non-privacy.

This suggests that we need Ω(
√
n) noise.

Remark 2.2 (Takeaway). Here are some conclusions:

• Significant amount of noise must be introduced to protect privacy.

• The more queries are answered, the more noise we need.

Some DP results to shed light on how much error should be added:

1. For ε-DP and q queries, noise is Θp(q), which is much more that the error in Theorem 2.2.

2. For µ-GDP and q queries, noise is Θp(
√
q).

3. If q = o(
√
n) in ε-DP or q = o(n) in µ-GDP, we can get away with op(

√
n) noise.

10
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3 Background and Fundamentals of DP

The main reference for this lecture is Dwork and Roth [2014].

We model the database as X ∈ X n where each ”row” (entry of the list) corresponds to an
individual and X represents the set of possible contributions from one person. For now, assume n
is public.

Definition 3.1. A privacy mechanismM is a set of distributions/probability measures
MX on a measurable space (Y , f) indexed by X n, i.e.

M = {MX | X ∈ X n}.

For brevity, we writeM : X n → Y or M : X n → Y . We may also write M(X) to denote a

random variable
d∼MX .

X _ M _ M(X)
d∼MX

X ′ _ M _ M(X ′)
d∼MX′

}
approximately indistinguishable

MX MX′ MX MX′

Figure 1: Left: (approximately) indistinguishable; right: distinguishable

3.1 The Idea Behind Differential Privacy (DP)

If X,X ′ ∈ X n are databases differing in one person’s contribution, then the distributions MX and
MX′ should be close. Back tracking, the adversary will have a hard time discerning where the input
came from. Intuitively, this means that observing an outcome from either MX or MX′ , it is difficult
to determine whether the input was X or X ′. In other words, MX and MX′ are approximately
indistinguishable[2].

Definition 3.2 (Hamming Distance). H : X n ×X n → Z≥0 is given by

H(X,X ′) = #
{
i
∣∣ Xi ̸= X ′

i

}
and counts the number of rows (entries) where Xi and X

′
i disagree.

[2]Imagine two normal distributions with slightly different averages.
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So, X and X ′ differ in one person’s contribution exactly when H(X,X ′) ≤ 1. We say that
X and X ′ are neighboring databases or adjacent (or “differing in one entry”).

Example 3.1. The output of a privacy mechanism can be on any measurable space, and can be
designed for any purpose. For example, M could be designed to give a private version of some
statistics or query.

(1) M gives an approximate/noisy count for some property.

(2) Noisy estimate of mean/variance/sufficient statistic.

(3) Approximate regression coefficient or ML parameters.

M could also be designed to output a private synthetic dataset, which has similar properties as
the original dataset. While we will focus on real or vector valued statistics,M could also be designed
to produce outputs in more complex spaces such as densities or functional regression estimates.

Definition 3.3 (Differential Privacy). Let ε ≥ 0 and δ ∈ [0, 1]. A privacy mechanism
{MX | X ∈ X n} on (Y , ρ) is (ε, δ)-Differentially Private ((ε, δ)-DP) if for all measurable sets
S ∈ ρ, and all H(X,X ′) ≤ 1,

MX(S) ≤ eεMX′(S) + δ

Or alternatively, Pr[MX ∈ S] ≤ eε Pr[MX′ ∈ S] + δ .

Remark 3.1 (Important Special Cases).

• If δ = 0,M is called ε-DP or pure DP. In contrast, (ε, δ)-DP is also called approximate DP.

• If ε = 0, then δ simply becomes a total variation distance. And if δ = 0 as well then we get
a perfect privacy.

• If ε =∞, then there is no privacy.

Note that the probability is only over the randomness in M. DP does not assume a probability
distribution for X.

3.2 Randomized Response (RR)

Suppose that there is a survey asking a yes-or-no question “Have you ever ?” and survey
takers are asked to follow the following instructions:

Your Answer :


Truth w.p. 1− p
Yes w.p. p/2

No w.p. p/2

Theorem 3.1. Randomized Response (RR) satisfies ε-DP where ε = (TBD in proof).

12
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Proof of Theorem 3.1. Fix any individual, whose conditional probabilities are

Pr[YES | YES] = 1− p+ p

2
= 1− p

2
= Pr[NO | NO]

Pr[YES | NO] = p

2
= Pr[NO | YES]

(Pr[A | B] here denotes the probability of an individual says A given/when their truth is B.)

Then, after a massive cancellation for other individuals’ ratio, the ratios to be checked are

Pr[YES | YES]
Pr[YES | NO]

=
1− p/2
p/2

=
2

p
− 1 =

2− p
p

and
Pr[NO | NO]
Pr[NO | YES]

=
1− p/2
p/2

=
2− p
p

=
Pr[YES | YES]
Pr[YES | NO]

for all individuals. Hence, as we set ε = log

(
2− p
p

)
, RR satisfies ε-DP. ■

Remark 3.2. Consider different values of p,

• If p = 1, then it is the same as flipping a coin. ε = log

(
2− 1

1

)
= log(1) = 0 so we achieve

0-DP, which is perfect privacy.

• If p = 0, then we always respond with truth, so we have ∞-DP, i.e. no privacy.

• In general, to achieve ε-DP, we set p to be eε =
2− p
p

=⇒ p =
2

1 + eε
and this gives ε-DP.

Example 3.2. Let θ be the true population proportion of participants with the property. The
outcome of an individual answering ”YES”, denoted by Y , from RR, has expectation:

E[Y ] = Pr[YES | YES]︸ ︷︷ ︸
mechanism

Pr[Truth = YES]︸ ︷︷ ︸
model

+Pr[YES | NO] Pr[Truth = NO]

=

(
1− p

2

)
θ +

p

2
(1− θ) = p

2
+ (1− p)θ,

which is biased but linear in θ. Encode 1 = YES and 0 = NO, and let T ∼ Bern(θ) be the truth,
then

(Y | T ) ∼ Bern

((
1− p

2

)
T +

p

2
(1− T )

)
.

13
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It is direct to construct Y−p/2
1−p

as an unbiased estimate of θ with variance

Var

(
Y − p/2
1− p

)
=

1

(1− p)2
Var(Y ) =

1

(1− p)2

[
E
[
Var
(
Y | T

)]
+Var

(
E
[
Y | T

])]

=
1

(1− p)2

ET∼Bern(θ)

[
p

2

(
1− p

2

)]
+Var

(
p

2
+ (1− p)T

)
=

1

(1− p)2

[
p

2

(
1− p

2

)
+ (1− p)2θ(1− θ)

]

=
p
2

(
1− p

2

)
(1− p)2︸ ︷︷ ︸

extra error from privacy

+ θ(1− θ)︸ ︷︷ ︸
variance without privacy

by the law of total variance.

Suppose our dataset has n individuals and RR gives (Y1, . . . , Yn). Then, θ̂ =
Y − p/2
1− p

is an

unbiased estimator for θ where Y = 1
n

∑n
i=1 Yi. Hence,

Var
(
θ̂
)
=

1

n
Var

(
yi − p/2
1− p

)
=

1

n

(
p/2 (1− p/2)

(1− p)2
+ θ(1− θ)

)
=

1

n

(
eε

(eε − 1)2
+ θ(1− θ)

)
≈ 1

n

(
1

ε2
+ θ(1− θ)

)
as ε→ 0

On the positive side, we have a
√
n-consistent estimator for θ, but the asymptotic variance

is inflated. This is because the error introduced is Θp

(
1√
n

)
—the same rate as the statistical

estimation error.

In fact, RR satisfies a stronger notion of privacy than ε-DP, called local-DP, where even the data
collector does not learn the responses. Note that all local ε-DP are central ε-DP. As we will discuss
later, it is possible to design a better (central) DP mechanism to estimate θ̂ with O

(
1
n

)
error. A

popular option is the Laplace mechanism.

Here is a new motivating question:

Question 3.1. How do we show a mechanism satisfies ε-DP?

We need to show that
Pr[MX ∈ S] ≤ eε Pr[MX′ ∈ S]

for all adjacent X and X ′, and all measurable sets S. The key lemma is as follows.

14
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Lemma 1. Suppose that MX is a continuous (discrete) distribution for all X, with PDF fX , then
if fX(t) ≤ eεfX′(t) for all t thenM satisfies ε-DP.

Proof of Lemma 1. Let S be a measurable set, then

Pr[MX ∈ S] =
∫
S

fX(t)dt ≤ eε
∫
S

fX′(t)dt ≤ eε Pr[MX′ ∈ S]

For discrete cases, replace integrals with sums. ■

Remark 3.3 (Inverse of Lemma 1). If the inequality holds for a.e. t instead of for all t, then the
inverse of Lemma 1 holds as well.

3.3 Laplace Distribution and Mechanism

Most statistics/queries of interests are real-vector valued, i.e. f : X n → Rk. We can add (indepen-
dent) noise to f to make it DP, but the noise must be scaled to the sensitivity of f ; how much
can f change when going from X to X ′ adjacent? And how do we quantify that?

Definition 3.4 (ℓ1-sensitivity). The ℓ1-sensitivity of a function f : X n → Rk is

∆f = sup
H(X,X′)≤1

∥∥f(X ′)− f(X)
∥∥
1
= sup

H(X,X′)≤1

k∑
i=1

|fi(X)− fi(X ′)|

Definition 3.5 (Laplace Distribution). The Laplace distribution Lap(m, s) is a continuous

real valued r.v. with density
1

2s
exp

(
−|x−m|

s

)
, where m is the location and s is the scale.

Remark 3.4.

• Lap(m, s) is also known as the double exponential distribution with mean m and variance 2s2.

• If X1, X2
i.i.d.∼ Exp(λ) where λ is called the rate parameter, then (X1 −X2) ∼ Lap

(
0,

1

λ

)
.

• If Y ∼ Lap(0, s) then |Y | ∼ Exp
(
1/s
)
.

Theorem 3.2 (Laplace Mechanism). Let ε > 0. Given f : X n → Rk with ℓ1-sensitivity ∆f ,
the Laplace mechanism is

MX = f(X) + (L1, · · · , Lk)
⊤

where Li
i.i.d.∼ Lap

(
0,

∆f

ε

)
, then M satisfies (ε, 0)-DP.

15
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Proof of Theorem 3.2. Let H(X,X ′) ≤ 1. Call pX the PDF of MX and pX′ the PDF of MX′ .
Let t ∈ Rk, then

pX(t)

pX′(t)
=

k∏
i=1

exp
(

−ε
∆f
|fi(X)− ti|

)
exp
(

−ε
∆f
|fi(X ′)− ti|

) =
k∏

i=1

exp

(
ε

∆f

(
|fi(X ′)− ti| − |fi(X)− ti|

))

≤
k∏

i=1

exp

(
ε

∆f
|fi(X)− fi(X ′)|

)
(∵ Triangle inequality)

= exp

(
ε

∆f

∥∥f(X)− f(X ′)
∥∥
1

)
≤ exp

(
ε

∆f
∆f

)
= exp(ε) (∵ Supremum in Definition 3.4)

■
Remark 3.5. Note that Laplace mechanism adds noise proportional to the sensitivity and inversely
proportional to ε.

• More sensitive requires more noise.

• More privacy (smaller ε) requires more noise.

Example 3.3 (Counting Query). How many elements in the database have property P?

• This type of query is simple but commonly used.

• The sensitivity of any counting query is 1. Hence, ε-DP can be achieved by adding Lap
(
1/ε
)
.

• If we have m counting queries, upper bound on ℓ1-sensitivity of the vector is m. So to get
ε-DP, we add i.i.d. Lap

(
m/ε

)
.

Example 3.4 (Histogram Query). Sometimes, the counting queries are structurally disjoint. Con-
sider the following question: Are you currently a resident of (Alaska, Alabama, Arizona, · · · ,
Wyoming)?

Each person appears in only one count. Changing their value can affect at most two queries,
so ℓ1-sensitivity is 2, no matter how many queries there are! So we add Lap

(
2/ε
)
to get ε-DP.

Remark 3.6. The 2020 Census consists of several histograms and counting queries, and they add
noise to achieve DP.

Example 3.5 (Cf. Example 3.2). Everyone has a 1/0 true answer to a question, modeled as
Bern(p). We want to estimate the true p. With RR, our estimator had variance

p(1− p)
n

+
eε

n(eε − 1)2
≈ p(1− p)

n
+

1

nε2
,

which has rate X +Op

(
1√
nε

)
. Instead, we could use the Laplace mechanism:

n∑
i=1

I(Xi = 1) + Lap

(
1

ε

)

16
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Dividing by n, the estimator X + Lap

(
1

nε

)
has variance

p(1− p)
n

+
2

n2ε2
,

which has rate X +Op

(
1
nε

)
.

Remark 3.7 (Security without Obscurity). The DP mechanism can be publicly known without
affecting the privacy guarantee. This is important for statistical inference.

Example 3.6. Census swapping pre-DP vs. DP algorithm

3.4 Post-Processing

An analyst without additional knowledge of the database cannot make the output of a DP mechanism
less private by applying some function.

Remark 3.8. The post-processing property comes from Data Processing Inequality in Information
Theory, which says that for KL Divergence, Renyi Divergence, Total Variation...,

D(X∥Y ) ≥ D(f(X)∥f(Y )).

Proposition 3.1 (Post-Processing). Let M : X n → Y be a (ε, δ)-DP mechanism. Let
f : Y → Z be a randomized or deterministic mapping, then f ◦M : X n → Z is (ε, δ)-DP.

Proof. We prove the result when f is deterministic. Fix X,X ′ ∈ X n s.t. H(X,X ′) ≤ 1, and fix
a measurable set S ⊆ Z. Let T :=

{
y ∈ Y

∣∣ f(y) ∈ S} = f−1(S). Then,

Pr[f(MX) ∈ S] = Pr[MX ∈ T ]
≤ eε Pr[MX′ ∈ T ] + δ

= eε Pr[f(M(y)) ∈ S] + δ.

The bound is tight when f−1 exists. ■

Post-processing is also useful in mechanism design. We can privatize summary statistics or an
entire synthetic database and then process them to estimate specific quantities, perform hypothesis
testing and construct confidence intervals, or conduct Bayesian inference.

3.5 Composition

When data contributes to two or more differentially private outputs, the privacy guarantee degrades
in a controlled manner.

17
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Theorem 3.3 (Composition). Let Mi : X n → Yi be (εi, δi)-DP for i = 1, · · · , k. Then if
M : X n →

∏k
i=1 Yi is defined by

M(X) =
(
M1(X),M2(X), · · · ,Mk(X)

)
,

M satisfies
(∑k

i=1 εi,
∑k

i=1 δi

)
-DP.

Proof. We prove the case where δ = 0 and k = 2. Let X,X ′ ∈ X n and H(X,X ′) ≤ 1. Also let

f 1
X be the PDF/PMF of M1(X)

f 2
X be the PDF/PMF of M2(X)

f 12
X be the/PMF PDF of M(X)

... and similar for X ′

Then it suffices to show that
f 12
X (t1, t2)

f 12
X′(t1, t2)

≤ eε1+ε2 for all t1 ∈ Y1, t2 ∈ Y2.

f 12
X (t1, t2)

f 12
X′(t1, t2)

=
f 1
X(t1)f

2
X(t2)

f 1
X′(t1)f 2

X′(t2)
≤ eε1eε2 = eε1+ε2

It is straightforward to extend to k > 2, but δ ̸= 0 requires more complicated argument. ■

While the result for δ guarantee is loose, there will be tighter composition bounds for (ε, δ)-DP-
case in our later discussion.

3.6 Group Privacy

What if the two databases differ by a family of size k?

Proposition 3.2 (Group Privacy for Pure DP). Any (ε, 0)-DP mechanismM is (kε, 0)-DP
for groups of size k. More precisely, for all H(X,X ′) ≤ k and set of outputs S ⊆ Range(M),

Pr[MX ∈ S] ≤ ekε Pr[MX′ ∈ S]

Proof of Proposition 3.2. Let X0, X1, · · · , Xk be a sequence s.t. X0 = X and Xk = X ′, and
H(Xi−1, Xi) ≤ 1 for all i = 1, · · · , k. Then,

Pr[M(X0) ∈ S] ≤ eε Pr[M(X1) ∈ S] ≤ e2ε Pr[M(X2) ∈ S] ≤ · · · ≤ ekε Pr[M(Xk) ∈ S]

Hence, M is (kε, 0)-DP. ■

While (ε, 0)-DP has a strict lower bound, it inhibits flexibility in obtaining, for example, an
unbiased estimator for the private mean, which can instead be achieved by (ε, δ)-DP. Note that
there is a more complex group privacy result for (ε, δ)-DP.
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We listed other DP properties as follows:

• Protection Against Arbitrary Risks

Let S be any set of outputs of concern. Then Pr[M(x) ∈ S] can increase by at most a factor
of eε when an individual joins or leaves the database.

• Automatic Protection Against Linkage Attacks

DP provides protection regardless of the attacker’s knowledge, whether it comes from past,
present, or future data sources (databases).

• Quantification of Privacy Loss

Instead of a binary safe/not safe classification, we have a continuous measure of the privacy
guarantee. This allows us to ask:
1. For a fixed privacy bound, which techniques provide better utility or accuracy?

2. For a fixed level of accuracy, which techniques offer stronger privacy?

[High privacy (with low utility) vs. High utility (with low privacy)]

3.7 Connection to Hypothesis Testing

Suppose an adversary knows n − 1 rows of a database (everything in the database except the last
row), and believe that the last row is one of two options. Given a DP output, the adversary will still
struggle to determine the last row.

Theorem 3.4. Let X,X ′ ∈ X n s.t. H(X,X ′) ≤ 1. Let M : X n → Y be a privacy
mechanism. Consider the hypothesis test

H0 : X versus H1 : X
′

based on the output of M , at type I error α. Then M satisfies (ε, δ)-DP if and only if the
power is bounded above by min{eεα + δ, e−ε(α− 1 + δ) + 1}.
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Proof of Theorem 3.4. We prove the =⇒ direction with a deterministic rejection rule. Let R be
any rejection set, then

Pr[M(X) ∈ R]︸ ︷︷ ︸
Prob. we reject
when X is true

≤ α and Pr[M(X) ∈ Rc] ≥ 1− α

Let the power β = Pr[M(X ′) ∈ R], then (ε, δ)-DP implies

β = Pr[M(X ′) ∈ R] ≤ eε Pr[M(X) ∈ R] + δ ≤ eεα + δ

which gives us the first upper bound. We also have

1− α =Pr[M(X) ∈ Rc] ≤ eε Pr[M(X ′) ∈ Rc] + δ = eε(1− β) + δ,

which gives β ≤ e−ε(α− 1 + δ) + 1. ■

3.8 Differentially Private Linear Regression

To perform linear regression on privatized data, for example, we need to leverage the above properties.

Given dataset D = (X, y) with di = (Xi, yi) ∈ Rp+1 such that X ∈ Rn×p and y ∈ Rn. We

model yi = Xiβ + εi where εi
i.i.d.∼ N

(
0, σ2

)
and β ∈ Rp, and our usual simulator for β is

β̂ = (X⊤X)−1X⊤y,

which consists of the following quantities:

s =

 n∑
i=1

Xij ,
n∑

i=1

X2
ij ,

n∑
i=1

XijXik ,
n∑

i=1

Xijyi


for all j < k. In literature, we often assume Xij ∈ [0, 1] and yi ∈ [0, 1], then each of these

quantities/sums has sensitivity 1 and there are 3p+

(
p

2

)
of these sums. The creativity here: rather

than privatizing β̂, which is very sensitive to outlier (the worst case), we could privatize the elements

of β̂ that are not as sensitive.

So, adding Lap

(
0,

3p+
(
p
2

)
ε

)
noise to each of the quantities in s preserves ε-DP. Combine

them into X̃⊤X and X̃⊤y, then by post processing, β̃ = (X̃⊤X)−1(X̃⊤y) is a DP estimate of β.

Remark 3.9 (Clamping). If data are not naturally bounded, unlike counts, then clamping is often
used. Choose bounds L ≤ U such that you expect L ≤ t(Xi) ≤ U for most Xi in practice. The
clamped value is

t(Xi)
]U
L
=


U if t(Xi) > U

t(Xi) if L ≤ t(Xi) ≤ U

L if t(Xi) < L,

then T ′(x) :=
n∑

i=1

t(Xi)
]U
L
has sensitivity ∆ = U − L.
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4 Alternative DP Regimes

The main reference for this chapter is Li et al. [2017].

4.1 Bounded versus Unbounded DP

This is an exploration of what Differential Privacy means? Recall that (ε, δ)-DP requires

Pr[M(X) ∈ S] ≤ eε Pr[M(X ′) ∈ S] + δ

for all sets S and all adjacent X and X ′.

The concept ”adjacent” is meant to capture ”differing in one entry/individual.” So far, we have
set X ∈ X n where n is fixed and known, and used Hamming distance H(X,X ′) ≤ 1 to determine
adjacency. However, we may be worried that n itself may be a sensitive quantity. For example,
suppose X is the database of citizens with the sickle cell trait. Knowing n, the sample size could
be used for attack!

1. With Hamming distance, we change one entry (bounded).

2. Instead, we could add or remove an individual (unbounded).

Then, let X ∈ X ∗ = ∅ ∪ X ∪ X 2 ∪ · · · , where X ∗ is the set of all possible databases, and define

d(X,X ′) = 1,

if X ′ can be obtained from X by adding or deleting an entry. With such notation, we have

1. Bounded (add/delete) DP if X n is used with distance measure H

2. Unbounded (change) DP if X ∗ is used with distance measure d

Proposition 4.1. LetM : X n → Y be a mechanism satisfying ε-DP (add/delete), thenM
satisfies 2ε-DP (change).

Proof. Let X,X ′ ∈ X n differing in one entry. Let X̃ be the database with that entry deleted
X n−1. Then,

X,︸︷︷︸
add 1

X̃ ,X ′︸︷︷︸
delete 1

is a sequence of neighboring databases in unbounded sense. Then, we can apply either group
privacy or DP inequality twice to conclude. ■

Remark 4.1 (What is the difference?). The key difference between bounded DP and unbounded
DP is whether the sample size n is public or protected. Even if n is not a concern in and of itself,
when using bounded DP, we need to be careful when applying DP mechanisms on subsets of the
dataset.
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Proposition 4.2. Let M satisfies f -DP (add/delete) then it satisfies f(1− f)-DP (change).

We can use group privacy result to prove this.

Proposition 4.3 (Parallel Composition for Unbounded DP). LetM1, · · · ,Mk be k mech-
anisms satisfying ε1-DP, · · · , εk-DP (unbounded) respectively, whereMi : X ∗ → Yi. Let f
be a deterministic partitioning function, and let X1, · · · , Xk be the resulting partitions from
applying f to database X. Then (M1(X1),M2(X2), · · · ,Mk(Xk)) satisfies (maxi εi)-DP
(unbounded).

proof sketch. Let X,X ′ be two adjacent databases. The extra individuals lies in one of the k
partitions. Whenever it is, say i, the privacy parameter is εi (other mechanisms are not affected).
So the worst case if maxi=1,...,k εi. ■

Remark 4.2 (Proposition 4.3). For tradeoff functions, the result would be:

f ∗(α) = Hull

(
min

i
fi

)
(α)-DP.

We take the convex hull for fi’s pointwise to ensure that f ∗ is a convex function.

Remark 4.3 (What can go wrong with bounded DP?). LetMn : X n → R be the (bounded)
DP mechanism, which just returns n, satisfying 0-DP (well-defined for n = 0, 1, 2, . . .). Let
f be any partition function (e.g. men/women, infected/not infected, race, tabulation of all
US citizens . . . ). Then, running Mn on each partition tells exactly how many records are
in each partition. Obviously, this does not satisfy 0-DP as suggested by parallel composition
(Proposition 4.3).

Takeaway: Bounded-DP does not satisfy parallel composition!

We can still use partitions/subsampling in bounded-DP, but need to analyze the whole system.

Example 4.1 (DP on graphs). (Node)-DP is too dramatic and often not meaningful, whereas
(Edge)-DP is more relaxed.

4.2 Local DP

So far in this class, we have been working in the ”Central Model” of DP that looks as follows.
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The key part of this mechanism design is that we assume the privacy expert has access to the
original database X = (X1, · · · , Xn) and he applies a DP mechanism to X. But what if we do not
trust the data curator? Or we are worried having the original data in one place (could be hacked)?

4.2.1 Local Model

A DP mechanism is applied ”locally” (such as on the individual’s device) before sending the results
to the curator.

A complexity arises in local DP mechanisms: after receiving the DP response Z1 from person
1, we may want to ask a different questions to person 2. That is, different questions may be asked
based on previous answers and multiple rounds of communication can be required. We can express
the mechanism applied to the i-th person as

Zi ∼M( · | Xi = x︸ ︷︷ ︸
person i

, Zj = zj,∀j ̸= i).
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Definition 4.1 (LDP). For a privacy parameter ε > 0, we say thatM is ε-locally differentially
private (ε-LDP) if

M(S | Xi = x, Zj = zj, j ̸= i) ≤ eεM(S | Xi = x′, Zj = zj, j ̸= i)

for all measurable sets S, all values of zj, j ̸= i and all x, x′ ∈ X . When zi is generated
based only on Xi, then this simplifies to

sup
S

sup
x,x′∈X

M(S | Xi = x)

M(S | Xi = x′)
≤ eε

Example 4.2 (Local DP Mechanisms). (1) Randomized response is LDP when

Zi =

{
Xi w.p. eε

1+eε

1−Xi w.p. 1
1+eε

,

where Xi ∈ [0, 1].

(2) Laplace mechanism is LDP when, say Xi ∈ [a, b],

Zi = Xi +
b− a
ε

Li,

where Li ∼ Lap(0, 1).

Remark 4.4. Note that every ε-LDP mechanism satisfies ε-DP. All Central DP (bounded) mecha-
nisms are local DP when applied to dataset of size 1.

4.2.2 Comparison of Minimax Rates

If LDP is stronger and safer than the central model, why not always use LDP? This is because of
the error rate!

For k > 1, consider the families Pk of distributions P such that EP

[
|X|k

]
≤ 1 and we want to

estimate the mean θ(P ) = EP [X] ∈ [−1, 1]. We assume k ≥ 2 throughout.

Remark 4.5. Higher moments control the tail of the distribution, which turns out affecting the rate
in DP.

Definition 4.2 (Minimax: Without privacy constraints). The minimax is defined as

inf
θ̂

sup
P∈Pk

E
[
θ̂(X)− θ(P )

]2
≳

1

n

and the matching upper bound is achieved by the sample mean.
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Theorem 4.1 (Duchi et al. [2013, 2018]). Under local model ε-LDP ,

inf
M: ε-LDP

θ̂ post processing

sup
P∈Pk

E
X∼P

Z∼M(X)

[
θ̂(Z)− θ(P )

]2
≳

(
1

nε2

) k−1
k

Theorem 4.2 (Barber and Duchi [2014]). Under central model ε-DP,

inf
M: ε-DP

sup
P∈Pk

E
randomness of
X and M

[
M(X)− θ(P )

]2
≳

1

n
+

(
1

n2ε2

) k−1
k

Comparing two models, we have

• If k = 2:

– LDP gives rate
1

ε
√
n
: significantly worse than

1

n
from the non-private case.

– ε-DP gives rate
1

n
+

1

εn
=

(
ε+ 1

ε

)
1

n
: same rate as non-private but lower effective

sample size (ESS).

• As k →∞, E
[
|X|k

]
≤ 1 becomes equivalent to |X| ≤ 1, and

– LDP gives rate
1

nε2
: same rate as non-private but lower effective sample size (ESS).

– ε-DP gives rate
1

n
+

1

ε2n2
: same rate as non-private as

1

ε2n2
is asymptotically negligible!

As long as ε does not shrink too fast, in central model, the privacy error is either of the same order
or smaller than the non-private statistical estimation error. Under LDP, unless k = ∞, the privacy
error dominates the statistical estimation error.
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5 Report Noisy Max

5.1 Algorithm of Report Noisy Max (RNM)

Example 5.1. We may want to consider the following question:

Q. What is the most common medical condition?

Suppose we want to know which condition is (approximately) the most common in medical database.
For each diagnosis, we ask if they have the condition. Note that each person may have multiple
conditions, so sensitivity is m = # of possible conditions. To release all noisy counting queries it
requires Op(m/ε) noise.

Suppose there are m queries, each with sensitivity 1. The algorithm goes as follows:

1. Add independent Lap

(
0,

2

ε

)
noise to each.

2. Return the index of the largest (noisy) value.

In fact, the algorithm reports the argument of the noisy max rather than the noisy max itself!

Proposition 5.1. Report Noisy Max satisfies (ε, 0)-DP.

Proof of Proposition 5.1. Let H(X,X ′) ≤ 1 and call f(X) and f(X ′) the vector of queries under
X and X ′. Note that for all j = 1, · · · ,m

fj(X
′)− 1 ≤ fj(X) ≤ fj(X

′) + 1of (5.1)

since the sensitivity is 1 for each query.

Fix i ∈ {1, · · · ,m} and consider the PMFs Pr[i | X] and Pr[i | X ′]. Fix r−i ∼ Lapm−1

(
0,

2

ε

)
,

which is the noise for all except the i-th entry. By definition, we wish to show Pr[i | X] ≤ Pr[i | X ′],
which is equivalent of showing

Er−i
Pr[i | X, r−i] ≤ Er−i

Pr[i | X ′, r−i].

Then, it suffices to show
Pr[i | X, r−i] ≤ Pr[i | X ′, r−i].

We start the proof from defining

r∗ := min
ri

: fi(X) + ri > fj(X) + rj ∀j ̸= i, (5.2)

the smallest noise needed to make ith the noisy max.

Once r−i is fixed, we see that i is the output under X if and only if ri ≥ r∗, i.e.

Pr[i | X, r−i] = Pr(ri ≥ r∗).
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For all j ̸= i, fi(X) + r∗ > fj(X) + rj by Eq. (5.2). Then,

1 + fi(X
′) + r∗ ≥ fi(X) + r∗ (Eq. (5.1))

> fj(X) + rj (Eq. (5.2))

≥ (fj(X
′)− 1) + rj (Eq. (5.1)),

which implies fi(X
′) + (r∗ + 2) ≥ fj(X

′) + rj. So, if ri ≥ r∗ + 2, then under X ′ , the output is i
(in the worst case). Hence, by applying the Laplace mechanism ri ∼ Lap

(
0, 2

ε

)
, we get

Pr[i | X ′, r−i] ≥ Pr[ri ≥ r∗ + 2] = Pr[ri − 2 ≥ r∗]

≥ e−ε Pr[ri ≥ r∗]

= e−ε Pr[i | X, r−1],

which implies Pr[i | X, r−i] ≤ eε Pr[i | X ′, r−i]. To carefully complete the proof by following the
claim, we take expectation/marginalize over r−i on both sides to obtain

E
r−i

[
Pr[i | X, r−i]

]
≤ eε E

r−i

[
Pr[i | X ′, r−i]

]
⇐⇒ Pr[i | X] ≤ eε Pr[i | X ′].

Then, it follows that RNM satisfies (ε, 0)-DP. ■

5.2 RNM Analysis

Measure the utility of RNM by the expected utility gap (excess risk) i.e. the expected difference
between the maxi fi(X) and fM(X)(X) (holding X fixed)

Example 5.2. Suppose we have k observations, we have f1(X) = 100 and fi(X) = 90 for other
i’s. When k = 1000, it is more likely to have some fi surpassing f1 after noise is added.

We can analyze RNM with any additive noise (continuous and symmetric) ri
iid∼ F .

Lemma 2. Let f1, . . . , fk : X n → R be k queries with sensitivity 1, then RNM with noise distribution
F (continuous and symmetric) has expected utility gap bounded by

max
i
fi(X)− E M(X)

(r1,...,rk)

fM(X)(X) ≤ E|r1|+ E max
2≤i≤k

|ri|

Proof. Fix X. Assume without loss of generality that fi(X) ≤ 0 for all i and maxi fi(X) = 0
(relabeled if necessary). Assume further that i = 1 is the maximizer.

Given RVs r1, . . . , rk. Note that M(X)
d
=M(X; (ri)

k
i=1) and

M(X; (ri)
k
i=1) =

{
1, if max2≤j≤k[fj(X) + rj] ≤ r1

0, if i ≥ 2 and fi(X) + ri ≥ maxj ̸=i[fj(X) + rj],
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where ties happen with probability 0. We want a lower bound

EfM(X)(X) = EfM(X)(X)I(M(X) = 1)︸ ︷︷ ︸
=0

+EfM(X)(X)I(M(X) ̸= 1)

= EfM(X)(X)I

(
max
2≤j≤k

[fj(X) + rj] > r1

)
= EfM(X)(X)I(fM(X)(X) > r1 − max

2≤j≤k
rj) (5.3)

≥ E
(
r1 − max

2≤j≤k
rj

)
I(fM(X)(X) > r1 − max

2≤j≤k
rj) (5.4)

≥ E
(
r1 − max

2≤j≤k
rj

)
I(0 > r1 − max

2≤j≤k
rj) (5.5)

≥ −E|r1 − max
2≤j≤k

rj|

≥ −[E|r1|+ E max
2≤j≤k

|rj|]

Eq. (5.3): Under M(X) ̸= 1, we have r1 < max2≤j≤k[fj(X) + rj] = fM(X)(X) + rM(X).
We can now make the indicator set larger by including elements from {M(X) = 1}—in which
fM(X)(X) = 0)—to obtain an upper bound fM(X)(X) +max2≤j≤k rj of fM(X)(X) + rM(X). This
does not change the equality because fM(X)(X) = 0.

Eq. (5.4): We substitute fM(X)(X) with it lower bound r1 − max2≤j≤k rj, which makes the
expectation (integral) smaller. This is similar in the proof of Chebyshev’s inequality.

Eq. (5.5): Under M(X) ̸= 1, fM(X)(X) ≤ 0, which makes the indicator set larger. ■

Lemma 3. Let X1, . . . , Xk be RVs with moment generating function M for t > 0, then

Emax
i
Xi ≤

1

t
log k +

1

t
log(MX(t)).

Proof. Let t > 0,

Emax
i
Xi ≤

1

t
log

(
Emax

i
exp(tXi)

)
(by Jensen’s inequality)

≤ 1

t
log
(
kE exp(tXi)

)
,

where we use the fact that exp(tX) is monotone in X and max is (crudely) upper bounded by sum
of non-negative values. ■

Proposition 5.2. RNM with Lap
(
0, 2

ε

)
noise has expected utility gap

max
i
fi(X)− E M(X)

(r1,...,rk)

fM(X)(X) ≤ 2

ε
(2 log(k − 1) + 1 + 2 log 2),

which is O
(

log k
ε

)
.
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Proof. Recall if L ∼ Lap
(
0, 2

ε

)
and |L| ∼ Exp(µ = 2

ε
) from lemma above, MGF for Exp(µ) is

M(t) = (1− µt)−1 for t < 1
µ
.

Choosing t = 1
2µ
, it gives

Emax
i
fi(X) ≤ 2µ log k + 2µ log 2,

where Xi
iid∼ Exp(µ). Thus,

max
i
fi(X)− EM(X)fM(X) ≤ E|Li|+ E max

2≤j≤k
|Lj|

≤ 2

ε
+

4

ε
log(k − 1) +

4

ε
log 2

=
2

ε
(1 + 2 log(k − 1) + 2 log 2)

= O

(
log k

ε

)
.

■

5.3 RNM Applications

Example 5.3 (Linear Regression Selection Lei et al. [2018]). We may have multiple regression
models, but we want to find the simplest one which explains the data well. Equivalently, we want
to determine which entries of β are non-zero. Assume

|yi| ≤ r for i = 1, · · · , n
|Xij| ≤ 1 for i = 1, · · · , n and j = 1, · · · , d
∥β∥1 ≤ R

The optimal fit for the model M is

β̂M = argmin
∥β∥1≤R
β∈ΘM

−2ℓ(β;D)︸ ︷︷ ︸
=
∑n

i=1(yi−X⊤
i β)2

+φn|M |

where ℓ is log likelihood. Note that

• φn = 2 gives AIC;

• φn = log(n) gives BIC;

• φn = 0 gives standard least squares regression.

For a model M , its score is

min
∥β∥1≤R
β∈ΘM

−2ℓ(β;D) + φn|M |

29



DP Notes Report Noisy Max Awan

which has sensitivity (r+R)2. This is because (yi−X⊤
i β)

2 has the minimum value 0 and needs to
calculate maximum i,

max
(
yi −X⊤

i β
)2
≤ max

(
|yi|+ |X⊤

i β|
)2
≤

r +max |X⊤
i β|︸ ︷︷ ︸

≤∥Xi∥∞∥β∥1


2

≤ (r +R)2

by Holder’s inequality. So, −2ℓ(β;D) has sensitivity (r +R)2.

Example 5.4 (Private Model Selection Via Report Noisy Max). For each candidate model M ,

ℓR(M ;D) = max
β∈ΘM
∥β∥1≤R

−1

2

n∑
i=1

(yi −X⊤
i β)

2

LR(M ;D) = −2ℓR(M ;D) + φn|M |

L̃R(M ;D) = LR(M ;D) +
2(r +R)2

ε
LM ,

where LM ∼ Lap(0, 1). Return argminM L̃R(M ;D) satisfying ε-DP and it has errorO
(

log 2d(r+R)2

ε

)
=

O
(

d(r+R)2

ε

)
.
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6 Objective Perturbation

6.1 Objective Perturbation for Empirical Risk Minimization

We are interested in calculating

θ̂ = argmin
θ

1

n

n∑
i=1

l(θ; di),

where di = (Xi, yi) (represents the data for individual i) and l is a loss of the form l(θ; di) =

g(X⊤
i θ, yi). But, often the sensitivity of θ̂ is too high to use an additive mechanism. If the loss f

1. is convex on Θ,

2. has continuous Hessian, i.e. ∇2ℓ(θ;x) is continuous in x and θ,

3. has finite sensitivity of gradient, i.e. supD,D′ supθ ∥∇l(θ,D)− l(θ,D′)∥2 = ∆ <∞,

4. λ is an upper bound on eigenvalues of ∇2l(θ, x) for all x ∈ X and θ ∈ Θ,

then the Extended Objective Perturbation [Awan and Slavković, 2021] produces θ̃ as follows

1. choose 0 < q < 1,

2. set γ = λ
exp(ε(1−q))−1

,

3. sample V from density ∝ exp(−εq
∆
∥V ∥),

4. θ̃ = argminθ
1
n

∑n
i=1 l(θ, di) +

1
n
r(θ) +

γ

2n
θ⊤θ︸ ︷︷ ︸

regularization

+
1

n
V ⊤θ︸ ︷︷ ︸

random linear term

.

We can also view it as

θ̃ = argθ zero
1

n

n∑
i=1

∇l(θ; di) +
1

n
∇r(θ) + γ

n
θ +

V

n
,

which is conceptually similar to RNM as it only reports the argmin (argmax) after noise addition.
Note that when V is Gaussian, it satisfies (ε, δ)-DP.

Remark 6.1. Objective perturbation has developed as follows:

• Chaudhuri and Monteleoni [2008] develops privacy-preserving logistic regression algorithms,
highlighting a novel objective perturbation method and its link to regularization.

• Chaudhuri et al. [2011] introduces objective perturbation for differentially private ERM, out-
performing output perturbation [Dwork et al., 2006] in theory and experiments.
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gradient 1
n

∑n
i=1∇l(θ; di)

value of −V
n

(random)

θ̃

θ̂

θ

Figure 2: Extended Objective Perturbation

• Kifer et al. [2012] extends objective perturbation for private ERM and introduces new sparse
regression algorithms effective in high-dimensional settings.

Remark 6.2. As illustrated in Figure 2, by choosing a random y-intercept, the mechanism will
(hopefully) result in a small perturbation in θ̃ compared to θ̂.

Theorem 6.1. The Extended Objective Perturbation satisfies ε-DP.

Proof. We assume r(θ) is twice differentiable and Θ ∈ Rm—techniques in Kifer et al. [2012] allow
us to extend the result to arbitrary convex r(θ) and convex Θ. It suffices to show that for all
a ∈ Rm and H(D,D′) ≤ 1,

pdf(θ̃ = a | D)

pdf(θ̃ = a | D)′
≤ exp(ϵ)

Let a ∈ Rm and D,D′ be given. If θ̃ = a, then

a = argmin
θ

n∑
i=1

l(θ; di) + r(θ) +
γ

2
θ⊤θ + V ⊤θ.

Taking the gradient and setting to zero, we solve for V as

V (a;D) = −

 n∑
i=1

∇l(a; di) +∇r(a) + γa

.
Applying change of variable, we get

pdf(θ̃ = a | D)

pdf(θ̃ = a | D)′
=
f(V (a;D))

f(V (a;D)′)

| det(∇V (a;D′))|
| det(∇V (a;D))|

,
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where f is the density of V . Now we want to bound each factor separately. First we have

f(V (a;D))

f(V (a;D)′)
≤ exp(

εq

∆
∆) = exp(εq),

since the K-Norm mechanisms satisfy ε-DP (HW1) and scale is proportional to sensitivity of
gradient.

For the second factor, we assume without the loss of generality that di = di
′ for i = 1, . . . , n−1.

Call A = −∇V (a;D), B = −∇V (a;D′), and C =
∑n

i=1∇2l(θ; di) +∇2r(a) + γIm. Note that
A = C +∇2l(a; dn) and B = C +∇2l(a; dn

′). Then,

| det(∇V (a;D′))|
| det(∇V (a;D))|

=
det(B)

det(A)

=
det(C +∇2l(a; dn

′))

det(C +∇2l(a; dn))

=
detC

detC

det(Im + C−1∇2l(a; dn
′))

det(Im + C−1∇2l(a; dn))

≤ 1 + λ/γ

1︸︷︷︸
lower bound on det because eigenvalues≥1

= 1 +
λ

λ
[exp(ε(1− q))− 1]

= exp(ε(1− q)).

Since l(a; dn
′) = g(a⊤Xn; yn

′), the Hessian can be expressed as

∇2l(a; dn
′) = g′′(a⊤Xn; yn

′)XnX
⊤
n︸ ︷︷ ︸

rank≤1

,

which renders C−1∇2l(a; dn
′) rank less than or equal to 1. Note that determinant is product of

eigenvalues. So, the eigenvalues of Im + C−1∇2l(a; dn
′) are all 1 except the largest, which is

≤ 1 + λ
γ
. This can be seen from γ being a lower bound on eigenvalues of C.

Multiplying the two bounds, we get

pdf(θ̃ = a | D)

pdf(θ̃ = a | D)′
≤ exp(εq) exp(ε(1− q)) = exp(ε).

■
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6.2 Analysis of Objective Perturbation

For later convenience, let

L̂(θ;D) =
1

n

n∑
i=1

l(θ; di) with θ̂ = argmin
θ

L̂(θ;D)

L#(θ;D) = L̂(θ;D) +
γ

2n
θ⊤θ with θ# = argmin

θ
L#(θ;D)

Lpriv(θ;D) = L#(θ;D) +
1

n
V ⊤θ with θpriv = argmin

θ
Lpriv(θ;D)

Remark 6.3. This decomposition allows us to analyze the error rate of ∥θpriv − θ̂∥ in two steps:
variance (from DP randomness) and bias (from regularization).

Our first step is to understand (θpriv − θ#), also known as the variance term. Consider

∇L#(θpriv;D) = ∇L#(θ#;D)︸ ︷︷ ︸
=0

+∇2L#(θ1;D)(θpriv − θ#),

where θ1 is between θpriv and θ#. Thus,

(θpriv − θ#) = (∇2L#(θ1;D))−1 ∇L#(θpriv;D)︸ ︷︷ ︸
=∇Lpriv(θpriv;D)−V

n
=−V

n

= (∇2L#(θ1;D))−1(
−V
n

)

Assume ∇2L#(θ1;D)→ Σ#, we have

n(θpriv − θ#) d→ (Σ#)−1V

since V
d
= −V . Then,

∥θpriv − θ#∥ = Op

(
∥(Σ#)−1∥ ∆

ϵqn
∥V ∥

)
= Op

(
∥(Σ#)−1∥∆m

ϵqn

)
,

where the second inequality is given by Awan and Slavković [2021].

However, θ# is a biased estimator for θ. If the bias is larger than the privacy error, Objective
Perturbation may not work well. So, our second step is to understand (θ# − θ̂), also known as the
bias term. Consider

∇L#(θ̂;D) = ∇L#(θ#;D)︸ ︷︷ ︸
=0

+∇2L#(θ2;D)(θ̂ − θ#),

where θ2 is between θ̂ and θ#. Thus,

(θ̂ − θ#) = (∇2L#(θ2;D))−1 ∇L#(θ̂;D)︸ ︷︷ ︸
∇L̂(θ̂;D)+ γ

n
θ̂= γ

n
θ̂

= (∇2L#(θ2;D))−1

(
γ

n
θ̂

)
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Assume ∇2L#(θ2;D)→ Σ#, we have

n(θ̂ − θ#)→ (Σ#)−1γθ̂.

Then,

∥θ# − θ̂∥2 = O

(
∥Σ#∥−1γ∥θ̂∥2

n

)
= O

(
∥Σ#∥−1γ

√
m

n

)
.

By the triangle inequality and combining the variance and bias terms, we obtain

∥θpriv − θ̂∥ = Op

(
∥Σ#∥−1γ

√
m

n
+
∥(Σ#)−1∥∆m

ϵqn

)
= Op

(
∥(Σ#)−1∥∆m

ϵqn

)
,

where the second inequality holds by assuming ϵ, q, γ are bounded.
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7 Exponential Mechanism

The main reference for this chapter is McSherry and Talwar [2007].

So far, Laplace mechanisms, RNM, Objective Perturbation all assume ”nearby” values given
nearby ”utility”....are useful when values that are close in ℓ1-distance have similar utility.

However, this is not always the case!

Example 7.1 (Pumpkin Merchandise). Suppose that we have lots of pumpkins to sell and have
four potential buyers: A, B, C, and D. A, B, and C are all willing to pay up to $1/pumpkin, but D
is willing to pay up to $4.01/pumpkin. What is the optimal price?

• Price at $4.01: the revenue is $4.01.

• Price at $1: the revenue is $4.

• Price at $1.01: the revenue is $1.01.

• Price at $4.02: the revenue is $0.

Revenue

Price1 2 3 4

(4.01, 4.01)

1

2

3

4

Figure 3: Pumpkin Merchandise

Note the discontinuities of this function (price vs. revenue) and that adding noise directly to the
prize could completely destroy utility! For example, adding noise at (price, revenue) = (4.01, 4.01)
could make your revenue 0 at half of the times.

The exponential mechanism allows us to answer queries with arbitrary utility functions

u : X n × Y → R,

takes a database and a output and returns utility. We prefer higher utility.

Definition 7.1. The sensitivity of u is

∆u = sup
y∈Y

sup
H(X,X′)≤1

∣∣u(X, y)− u(X ′, y)
∣∣ <∞
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Theorem 7.1. The exponential mechanism (ExpMech) outputs the value y ∈ Y with prob-
ability/density proportional to

exp

(
ε

2∆u
u(X, y)

)
with respect to a nontrivial base measure on Y , and it satisfies (ε, 0)-DP.

Proof of Theorem 7.1. Call µ the base measure, then for H(X,X ′) ≤ 1 and y ∈ Y , the ratio of
the densities is

exp( ε
2∆u

u(X,y))∫
exp( ε

2∆u
u(X,z)) dµ(z)

exp( ε
2∆u

u(X′,y))∫
exp( ε

2∆u
u(X′,z)) dµ(z)

=

∫
exp
(

ε
2∆u

u(X ′, z)
)
dµ(z)∫

exp
(

ε
2∆u

u(X, z)
)
dµ(z)︸ ︷︷ ︸

=:A

exp
(

ε
2∆u

u(X, y)
)

exp
(

ε
2∆u

u(X ′, y)
)︸ ︷︷ ︸

=:B

= AB

B can be simplified as

B =
exp
(

ε
2∆u

u(X, y)
)

exp
(

ε
2∆u

u(X ′, y)
) = exp

(
ε

2∆u

(
u(X, y)− u(X ′, y)

))
≤ exp

(
ε

2∆u
∆u

)
= exp

(
ε

2

)
For A, we do the following

A =

∫
exp
(

ε
2∆u

u(X ′, z)
)
dµ(z)∫

exp
(

ε
2∆u

u(X, z)
)
dµ(z)

≤

∫
exp
(

ε
2∆u

(
u(X, z) + ∆u

))
dµ(z)∫

exp
(

ε
2∆u

u(X, z)
)
dµ(z)

= e
ε
2

∫
exp
(

ε
2∆u

u(X, z)
)
dµ(z)∫

exp
(

ε
2∆u

u(X, z)
)
dµ(z)

= e
ε
2

Combining the two, we get AB ≤ e
ε
2 e

ε
2 = eε and this concludes the proof. ■

7.1 Utility of the Exponential Mechanism

For a given database X and a utility measure u : X n×y → R, let OPTu(X) := max
y∈Y

u(X, y) denote

the maximum utility score over the possible outputs y ∈ Y , with respect to the database X.

We will bound the probability that the ExpMech returns a ”good” element of Y , where ”good”
is measured by the difference between u(X,M(X)) and OPTu(X), where M(X) is ExpMech
with utility u at ε-DP[3]. We will see in the next theorem that it is unlikely that this difference is

greater than O

(
∆u

ε
log |Y|

)
assuming that Y is discrete with cardinality |Y|. Practically, since

Y = Rd = (#float)d, O

(
∆u

ε
log |Y|

)
= O

(
∆u

ε
d

)
, which the standard error rate of an ExpMech.

[3]Since M(X) is a r.v., u(X,M(X)) is also a r.v.
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Theorem 7.2. Assume |Y| < ∞. Let X be a fixed database and let YOPTu(X) = {y ∈ Y |
u(X, y) = OPTu(X)} denote the set of outputs which attain the utility score OPTu(X).
Then,

Pr

[
u(X,M(X;u)) ≤ OPTu(X)− 2∆u

ε

(
log

|Y|
|YOPT|

+ t

)]
≤ e−t

Proof of Theorem 7.2. We have

Pr
[
u(X,M(X;u)) ≤ c

]
=

∑
y I(u(X, y) ≤ c) exp

(
ε

2∆u
u(X, y)

)∑
y exp

(
ε

2∆u
u(X, y)

)
≤

∑
y exp

(
ε

2∆u
c
)∑

y exp
(

ε
2∆u

u(X, y)
) (7.3)

=
|Y| exp

(
ε

2∆u
c
)∑

y exp
(

ε
2∆u

u(X, y)
)

≤
|Y| exp

(
ε

2∆u
c
)∑

y∈YOPT
exp
(

ε
2∆u

OPTu(X)
) (7.4)

=
|Y| exp

(
ε

2∆u
c
)

|YOPT| exp
(

ε
2∆u

OPTu(X)
)

=
|Y|
|YOPT|

exp

(
ε

2∆u

(
c−OPTu(X)

))
(7.5)

Eq. (7.3): (A common and useful trick) Find the upped bound by considering I(u(X, y) ≤
c) ≤ 1 and u(X, y) ≤ c as I(u(X, y) ≤ c) = 1.

Eq. (7.4): Restrict the set to be summed over to its subset YOPT and use the fact that
u(X, y) = OPTu(X) for the subset.

Now, we set c = OPTu(X)− 2∆u

ε

(
log

|Y|
|YOPT|

+ t

)
to get the desired result. ■
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Corollary 7.1. Fixing X,

Pr

[
u(X,M(X)) ≤ OPTu(X)− 2∆u

ε

(
log |Y|+ t

)]
≤ e−t

This is because we always have |YOPT| ≥ 1.

Example 7.2. Consider the question of determining which two medical conditions, A and B, are
more common. Suppose that

A(X) = # of A in database X

B(X) = # of B in database X

and assume A(X) > B(X). The utility measure is

u(X,A) = A(X) and u(X,B) = B(X)

and note that ∆u = 1. By our analysis of the exponential mechanism (denoted as M here),

Pr[M(X;u) = B] = Pr[u(X,M(X;u)) ≤ B(X)]

≤ 2

1
exp

(
ε

2
(B(X)− A(X))

)
,

where the inequality is given by Eq. (7.5) with |Y| = 2, |YOPT| = 1, ∆u = 1, and OPTu(X) =
A(X). We can see that as the gap between A(X) and B(X) widens, the probability that B output
becomes exponentially smaller.

7.2 Connection between ExpMech and RNM

In the case that |Y| is finite, one could apply either ExpMech or RNM as our utility results showed
that they have comparable performance. In fact, ExpMech is a special case of RNM with the use of
a different noise distribution.

Q: How to sample from a pmf on finite Y = {1, 2, . . . , N}?

Suppose we want to sample Y from a discrete distribution {1, 2, . . . , N} where the un-normalized
log-probability of outcome k is

zk = log(P (Y = k)) + c,

where c is the normalizing constant unknown and note that zk ∈ R.

• The obvious solution is to construct pmf/cdf and use standard samplers

π(k) = P (Y = k) =
exp(zk)∑N
i=1 exp(zk)

.

A minor issue with this solution is the expense to computer sum. A potentially more major
issue would be that its numerical instability on exp(zk) could be very large or very small.
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• Alternatively, we can use the Gumbel-max trick:

y = argmax
k=1,...,N

(zk +Gk),

where Gk
iid∼ Gumbel(0, 1) with pdf f(x) = exp(−x− e−x) and cdf F (x) = exp(−e−x). The

benefits are that it avoids summation and works in log-space avoiding numerical issues.

Proposition 7.1. The Gumbel-max trick gives

Y ∼ π.

Proof. Notice that Y does not change if we replace zk with log(πk). Define Uk = log(πk) + Gk,
then

P (Y = k) = P (Uk ≥ Ui, ∀i ̸= k)

=

∫ ∞

−∞
P (Uk ≥ Ui,∀i ̸= k | Uk = uk)p(uk)duk

=

∫ ∞

−∞

∏
i ̸=k

P (Uk ≥ Ui | Uk = uk)p(uk)duk

=

∫ ∞

−∞

∏
i ̸=k

P (Gi ≤ Uk − log(πi) | Uk = uk)p(uk)duk

=

∫ ∞

−∞

∏
i ̸=k

exp(−elog(πi)−uk − uk)f(uk − log(πk))duk

=

∫ ∞

−∞

∏
i ̸=k

exp(−elog(πi)−uk − uk) exp(−[uk − log(πk)]− e−[uk−log(πk)])duk

=

∫ ∞

−∞
exp

∑
i ̸=k

πie
−uk

πk exp(−uk − πke−uk)duk

= πk

∫ ∞

−∞
exp(−uk −

N∑
i=1

πi︸ ︷︷ ︸
=1

e−uk)duk

= πk

The last quality holds since the integrand is the pdf of Gumbel(0,1). ■

Example 7.3. Exercise: Repeat the analysis of RNM using Gumbel noise.

Remark 7.1. The main benefit of ExpMech over RNM is that it is well defined when Y is not finite.
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7.3 Utility Measure of Median and Quantiles

7.3.1 The Utility of Median

Example 7.4. Suppose there are 2n+ 1 data points in [a, b], have n of them equal to a and n+ 1
of them equal to b, then the last point can change the median substantially, i.e. changing one value
from b to a shows that the sensitivity is (b− a), which is the range!

Unlike sample mean, sample median can be very sensitive! So, instead of adding noise directly
to the median, we can express it with a utility function.

Given X1, . . . , Xn, what is a good u(X,m) such that argmax
m

u(X,m) = Median(X)?

• One option is the standard loss function for median

n∑
i=1

|Xi −m|,

which does not work well.

• Alternatively, we can use

u(X,m) =

∣∣∣∣12 − F̂n(m)

∣∣∣∣
where F̂n(m) =

1

n

n∑
i=1

I(Xi ≤ m) the empirical CDF. We will see that u(X,m) works better

than the standard loss function.

In general, the α-quantile is Qα(X) = argmint

∣∣nα−#{i | Xi ≤ t}
∣∣. Write Median(X) =

argmin
t

∣∣∣∣n2 −#{i | Xi ≤ t}
∣∣∣∣. To check its sensitivity, we consider X and X ′ that only differ in the

i-th entry, then ∣∣∣∣∣∣nα−#{i | Xi ≤ t}
∣∣− ∣∣∣nα−#

{
i
∣∣ X ′

i ≤ t
}∣∣∣∣∣∣∣

≤
∣∣∣nα−#{i | Xi ≤ t} − nα−#

{
i
∣∣ X ′

i ≤ t
}∣∣∣

≤1

as counts have sensitivity 1. This gives ∆u = 1. So, ExpMech draws t according to the density
proportional to

exp

(
−ε
2

∣∣nα−#{i | Xi ≤ t}
∣∣),

but this is not a well-defined density as this expression is not integrable. So, we need a non-trivial
base measure such as uniform on an interval or a ”prior” distribution on t.

41



DP Notes Exponential Mechanism Awan

7.3.2 The Utility of Quantile

Lemma 4. Suppose (Xn)
∞
n=1 is a random vector and E

[
|Xn|

]
<∞, thenXn = Op(E

[
|Xn|

]
).

Proof of Lemma 4. By Markov inequality, for some constant γ,

Pr[|Xn| ≥ ε] ≤
E
[
|Xn|

]
ε

=⇒ Pr

[
|Xn|

E
[
|Xn|

] ≥ 1

γ

]
≤ γ

■

Lemma 5. Let U1, · · · , Un
i.i.d.∼ U(0, 1), then U(s) − U(r) = Op

(
s− r
n

)
.

Proof of Lemma 5. Since U(s), U(r)
i.i.d.∼ U(0, 1), we have U(s)−U(r) ∼ Beta(s− r, n− s+ r + 1)

and hence

E
[
U(s) − U(r)

]
=

s− r
(s− r) + (n− s+ r + 1)

=
s− r
n+ 1

= O

(
s− r
n

)
So by Lemma 4, we conclude U(s) − U(r) = Op

(
s− r
n

)
. ■

Theorem 7.6. Let X1, · · · , Xn
i.i.d.∼ F , where F is a continuous CDF with PDF f . Choose

a quantile level α ∈ (0, 1) s.t. f > 0 and f continuous in a neighborhood around F−1(α).
And let

T ∼ exp

−εn
2

∣∣∣∣∣∣α− 1

n

n∑
i=1

I(Xi ≤ T )

∣∣∣∣∣∣
I(a ≤ T ≤ b)

be the output of the exponential mechanism where it is assumed that F−1(α) ∈ [a, b]. Let
the width Λ = b − a and assume that T is sampled with accuracy of d decimal values and
that Λ ≥ 3/10d, then

T −X(nα)

∣∣
X1,··· ,Xn

= Op

(
d+ log Λ

εnf(F−1(α))

)
where X(nα) is the nα-th

a order statistics and is the α-quantile of X1, · · · , Xn.

aMay need to round, but the result does not change.

Proof of Theorem 7.6. The number of candidates for the exponential mechanism is 10dΛ ≥ 3. For
simplicity, we assume αn ∈ Z, then for any given X,

Pr

[
−n
∣∣∣α− F̂ (T )∣∣∣ ≤ 0− 2

ε

(
log(10dΛ) + t

) ∣∣∣ X] ≤ e−t
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where F̂ (t) :=
1

n

n∑
i=1

I(Xi ≤ t). Since log(10dΛ) = d log(10) + log Λ ≥ 1, the inequality above

becomes

e−t ≥ Pr

 εn
∣∣∣α− F̂ (T )∣∣∣

d log(10) + log Λ
≥ 2

(
d log(10) + log Λ + t

d log(10) + log Λ

) ∣∣∣ X


≥ Pr

 εn
∣∣∣α− F̂ (T )∣∣∣

d log(10) + log Λ
≥ 2(1 + t)

∣∣∣ X
.

Let γ := e−t with t = log(1/γ), then

Pr

 εn
∣∣∣α− F̂ (t)∣∣∣

d log(10) + log Λ
≥ 2

(
1 + log

1

γ

) ∣∣∣ X
 ≤ γ.

Taking expectation over X on both sides to get marginal probability bound, we derive that

εn
∣∣∣α− F̂ (T )∣∣∣

d log(10) + log Λ
= Op(1),

which implies α− F̂ (T )
∣∣∣
X
= Op

(
d+log Λ

εn

)
.

Remark 7.2. Since nα is the index of the order statistics for the α-quantile, we can also write

nα− nF̂ (t) = Op

(
d+ log Λ

ε

)

The graph of nF̂ (t) =
n∑

i=1

I(Xi ≤ t) would look a lot like a “staircase” that increases by 1 at

each X(i)’s.
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We will use this figure to develop some intuition. Denote O := Op

(
d+ log Λ

ε

)
for simplicity,

then
T = X(nα+O) + small error

but we want to understand the difference of order statistics, since

T −X(nα) ≈ X(nα+O) −X(nα).

Now back to the proof. Becasue of the i.i.d. assumption, we can write X(s) = F−1(U(s)), where

U(s) is the order statistic from U1, . . . , Un
i.i.d.→ U(0, 1). Since the quantile function is a monotone

increasing function,

X(s) −X(r) = F−1(U(s))− F−1(U(r))

= F−1

(
U(s) +Op

(
s− r
n

))
−
(
F−1(U(r))

)
=

1

f(F−1(U(r)))︸ ︷︷ ︸
Derivative of F−1 at U(r)

Op

(
s− r
n

)
+ op

(
s− r
n

)
︸ ︷︷ ︸

negligible

by Taylor Approximation. We want to put the fraction into the Op rate, so we need to argue that

it converges to some constant. In our case, we will use r = nα and s − r = Op

(
d+ log Λ

ε

)
.

Thus, by Slutsky’s theorem and U(r)
d→ α, we get

1

f(F−1(U(r)))

d→ 1

f(F−1(α))
= Op

(
1

f(F−1(α))

)
.

Therefore,

X(s) −X(r) = Op

(
s− r

nf(F−1(α))

)
.

Thus,

T −X(nα) =
(
T −X(nF̂ (T ))

)
+
(
X(nF̂ (T )) −X(nα)

)
. (7.7)

For the second term on the RHS is

X(nF̂ (T )) −X(nα) = Op

(
d+ log Λ

εnf(F−1(α))

)
. (7.8)

As for the first term on the RHS, since X(nα) ≤ T < X(nF̂ (T )+1), and both X(nF̂ (T )+1) and

X(nF̂ (T )) converge to F−1(α) (because nF̂ (T )+constant
n

→ α as n→∞), the error

T −X(nF̂ (T )) ≤ X(nF̂ (T ))+1) −X(nF̂ (T )) = Op

(
1

nf(F−1(α))

)
(7.9)
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by Lemma 5.

We can see that the term in Eq. (7.9) is dominated by that of Eq. (7.8). So combining them
into Eq. (7.7), we get

T −X(nα)

∣∣
X
= Op

(
d+ log Λ

nεf(X(nα))

)
.

Note that the error is lower when X(nα) ≈ F−1(α) is near a mode of f (for unimodal, α = 1/2).
When F−1(α) is at a low value of f (tail or where there is little support), the error increases. ■

7.4 Exponential Mechanism for Empirical Risk Minimization

7.4.1 Motivation

Q: How should we go about designing utility/risk/loss function?

We are given X1, · · · , Xn i.i.d. from an unknown distribution F . We have a real-valued loss
function L(θ,X) and ideally, we want to find

θ∗ = argmin
θ

E
X∼F

[
L(θ,X)

]
Since all we have are X1, · · · , Xn

i.i.d.∼ F , we instead solve

θ̂ = argmin
θ

1

n

n∑
i=1

L(θ,Xi)︸ ︷︷ ︸
empirical risk

.

It is important that 1
n

∑
L(θ,Xi) is a sum over the Xi’s.

Example 7.5. Applications in statistics and machine learning that fit in this framework:

• Maximum Likelihood Estimation (MLE) / Maximum A-Posterior (MAP)

• Support Vector Machine

• Neural Network

• Linear, logistic, quantile regression (GLMs)

• M estimators

45



DP Notes Exponential Mechanism Awan

7.4.2 Empirical Risk Minimization (ERM)

The sensitivity of an empirical risk function is

∆(n) := sup
H(X,X′)≤1

sup
θ

∣∣∣∣∣∣ 1n
n∑

i=1

L(θ,Xi)−
1

n

n∑
i=1

L(θ,X ′
i)

∣∣∣∣∣∣
= sup

Xi,X′
i

sup
θ

1

n

∣∣L(θ,Xi)− L(θ,X ′
i)
∣∣

We may omit the prefactor of 1/n so that the sensitivity ∆ := n∆(n) is a constant not involving n
and consider its exponential mechanism

θ̃ ∼ α exp

− ε

2∆

n∑
i=1

L(θ,Xi)


which satisfies ε-DP. But its utility needs to be analyzed.

Remark 7.3 (α-Strongly Convex). The condition (1) in Theorem 7.10 can be seen as a convex
function being globally lower bounded by some quadratic function. For example, absolute value
functions are not strongly convex.

Theorem 7.10 (Awan et al. [2019]). Let X1, X2, . . . be a sequence of data points. Call

Ln(θ) =
n∑

i=1

L(θ,Xi), which satisfy:

(1) (α-Strongly Convex)
1

n
Ln(θ) are twice differentiable and convex, and there exists α > 0

such that the eigenvalues of
1

n
L′′
n(θ) are greater than α for all n and θ.

(2) Let θ̂n = argmin
θ

Ln(θ) and assume θ̂n → θ∗ and
1

n
L′′
n(θ̂)→ Σ−1, where Σ is positive

definite.

(3) Ln has sensitivity ∆ constant in n.

(4) Base measure g is bounded, positive, and continuous in a neighborhood of θ∗.

Then θ ∼ α exp

(
− ε

2∆
Ln(θ)

)
g(θ) satisfies

√
n(θ − θ̂) d−→ N

(
0,

2∆

ε
Σ

)

if g = 1. That is, the noise due to privacy is Op

(
1√
n

)
= Op

(√
∆

nε

)
, the same as the

statistical estimation error (Pitfalls!)
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Proof of Theorem 7.10. The density of the exponential mechanism is

fn(θ) = c−1
n g(θ) exp

(
− ε

2∆
Ln(θ)

)
where cn is the normalizing constant. Now call z =

√
n(θ − θ̂). Its density is

fn(z) = c−1
n n−1/2g

(
θ̂ +

z√
n

)
exp

(
− ε

2∆
Ln

(
θ̂ +

z√
n

))
.

We will show that fn(z) converge to a multivariate normal.

By the assumptions and Taylor expansion

Ln

(
θ̂ +

z√
n

)
= Ln(θ̂) + z⊤

L′
n(θ̂)√
n︸ ︷︷ ︸

=0 by assumption (2)

+z⊤L′′
n(θ̂)

z

2n
+ o(1)︸︷︷︸
L′′
n is greater
than α

The last term o(1) there is basically another equivalent way of representing O(1/
√
n). The first

term does not depend on z, so it can be absorbed into the constant. So, only the third term

appears in the density, and by assumption (2),
1

n
L′′
n(θ̂)→ Σ−1.

Now for other terms in fn(z), note first that∣∣∣∣∣g
(
θ̂ +

z√
n

)
− g(θ∗)

∣∣∣∣∣→ 0

Next, we can check the integrating constant(
1

integrating constant

)
= cnn

− 1
2 exp

(
ε

2∆
Ln(θ̂)

)

=

∫
g

(
θ̂ +

z√
n

)
exp

− ε

2∆

(
Ln

(
θ̂ +

z√
n

)
− Ln(θ̂)

) dz

By α-strong convexity,

−
(
Ln(θ̂ +

z√
n
)− Ln(θ̂))

)
≤ −nα

2

∥∥∥∥ z√
n

∥∥∥∥2 = −α∥z∥22
.

Since exp

(
−α∥z∥

2

2

)
is integrable, g is bounded in a neighborhood of θ∗. So, by the dominated

convergence theorem, the integrating constant converges, and so

fn(z)→ f(z) ∝ g(z) exp

(
− ε

2∆

z⊤Σ−1z

2

)
,

47



DP Notes Exponential Mechanism Awan

which, if g = 1, is the density of a multivariate normal. By Scheffe’s theorem, we conclude, if
g = 1,

√
n(θ̃ − θ̂) d−→ N

(
0,

2∆

ε
Σ

)
.

■

Remark 7.4 (Important Conclusion of Theorem 7.10). We see that when exponential mechanism
is applied to a strongly convex empirical risk, the resulting mechanism introduce Op(1/

√
n) noise,

rather than the ideal op(1/
√
n).

7.4.3 One-Dimensional Illustration for ExpMech Asymptotics in ERM

For θ close to θ̂(X),

L(θ;X) ≈ bn(θ − θ̂(X))2 + an,

where bn → b and an → a. By the utility result for ExpMech,

L(θ̃;X)− L(θ̂;X) = Op(
∆

ϵn
),

where ∆ is the sensitivity of l(θ;Xi) and L(θ;X) = 1
n

∑n
i=1 l(θ;Xi).

Thus,

L(θ̃;X)− L(θ̂;X) = bn(θ − θ̂(X))2 = Op(
∆

ϵn
)

which implies |θ̃ − θ̂(X)| = Op(
√

∆
ϵn
). This is the rate definded in the previous theroem.

Remark 7.5. In order to improve the rate, it must not be possible to approximate L(θ;X) as a

quadratic, i.e. L(θ;X) must not be twice differentiable at θ̂(X).

Example 7.6 (Linear Regression). For each individual, we observe (Xi, yi) where Xi ∈ Rd and
yi ∈ R which are modeled as

yi = X⊤
i θ + ei

where ei are i.i.d. mean zero and uncorrelated. Assume

(1) −1 ≤ Xij ≤ 1 ( =⇒ ∥Xi∥∞ ≤ 1) and −1 ≤ yi ≤ 1.

(2) ∥θ∥1 ≤ B.

The loss function is least squares:

L(θ,D) =
n∑

i=1

(yi −X⊤
i θ)

2
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For sensitivity, say D and D′ differ in i-th entry, and the values are (X1, y1) and (X2, y2) respectively.∣∣L(θ,D)− L(θ,D′)
∣∣ = ∣∣∣(y1 −X⊤

1 θ)
2 − (y2 −X⊤

2 θ)
2
∣∣∣

≤ sup
X1,y1,θ

(
y1 −X⊤

1 θ
)2

(∵ (y2 −X⊤
2 θ)

2 ≥ 0)

≤ sup

(
1 +

∣∣∣X⊤
1 θ
∣∣∣)2

(∵ |y1| ≤ 1)

≤ sup
θ

(
1 +∥θ∥1

)2
(∵∥X1∥∞ ≤ 1)

≤ (1 +B)2 <∞ (∵∥θ∥1 ≤ B)

So, we can employ the exponential mechanism

θ̃ ∼ α exp

− ε

2(1 +B)2

n∑
i=1

(
yi −X⊤

i θ
)2

w.r.t. the uniform measure on
{
θ
∣∣∥θ∥1 ≤ B

}
. However, L(θ,D) is strongly convex (and hence

twice differentiable) unless XX⊤ is degenerate. Thus, Theorem 7.10 sugggests that the noise due

to privacy is Op

(
1√
n

)
.

7.5 K-Norm Gradient Mechanism

The main reference for this section is Reimherr and Awan [2019].

We saw that if the loss function L in the exponential mechanism is twice differentiable, then
approximating L with a 2-term Taylor expansion results in

Ln(θ) = Ln(θ̂) + L′
n(θ̂)︸ ︷︷ ︸
=0

(θ − θ̂) + (θ − θ̂)⊤L′′
n(θ̂)(θ − θ̂) + error

Then,

fn(θ) ∝ exp

(
− εn
2∆

Ln(θ)

)
= exp

(
− εn

2∆

(
Ln(θ̂) + (θ − θ̂)⊤ L′′

n︸︷︷︸
→Σ−1

(θ̂)(θ − θ̂)
))

+ error

and the n in front becomes incorporated in the variance of the Gaussian, giving variance
2∆

n
Σ.

Remark 7.6. The idea was that we alter the loss function so that it can no longer be approximated
as a quadratic function such as an absolute value function (e.g., f(x) = |x| cannot be approximated
with a 2-term Taylor expansion at its minimizer). The K-Norm gradient mechanism (kNG) applies
the exponential mechanism to the altered loss function

∥∥∇Ln(θ,X)
∥∥ where ∥·∥ is any norm in Rk.
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Theorem 7.11. Let
{
Ln(θ | X)

∣∣ X ∈ X n
}
be a collection of measurable functions, which

are differentiable w.r.t θ almost everywhere. Assume that∥∥∇Ln(θ | X)−∇Ln(θ | X ′)
∥∥ ≤ ∆ <∞

for all H(X,X ′) ≤ 1 and almost all θ. Then the density (with respect to a base measure)

∝ exp

(
− ε

2∆

∥∥∇L(θ | X)
∥∥)

satisfies ε-DP.

Proof of Theorem 7.11. Let L̃(θ | X) =
∥∥∇L(θ | X)

∥∥, then L̃ has sensitivity ∆ by the triangle
inequality. The result follows by ExpMech. ■

Remark 7.7. kNG is similar to Objective Perturbation without regularizer and it also removes the
determinant appearing from the change of variable. This allows less strict assumptions on the loss.

Theorem 7.12. Let Ln(θ) = Ln(θ | X) be a sequence of loss functions satisfying the
assumptions of the previous result (Theorem 7.11) with sensitivity ∆. Assume further that

1.
1

n
Ln(θ) are twice differentiable (almost everwhere) and α-strongly convex functions.

2. The minimizers satisfy θ̂ → θ∗ and
1

n
∇2Ln(θ̂)→ Σ−1 where Σ is positive definite.

3. Assume the base measure is Lebesgue.

Let θ̃ be the sample drawn from kNG with privacy parameter ε, then

z = n(θ̃ − θ̂) d−→∝ exp

(
− ε

2∆

∥∥Σ−1z
∥∥),

the K-norm distribution. In particular, θ̃ − θ̂ = Θp

(
∆

εn

)
Proof of Theorem 7.12. The density of kNG is

fn(θ̃) = c−1
n exp

(
− ε

2∆

∥∥∥∇Ln(θ̃)
∥∥∥)

Define z = n(θ̃ − θ̂), which has the density

fn(z) = c−1
n n−1 exp

− ε

2∆

∥∥∥∥∥∇Ln

(
θ̂ +

z

n

)∥∥∥∥∥

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By assumption 2, we can write

∇Ln

(
θ̂ +

z

n

)
= ∇Ln(θ̂)︸ ︷︷ ︸

=0

+∇2Ln(θ̂)
z

n
+ op(1)

= ∇2Ln(θ̂)
z

n
+ op(1)

→ Σ−1z + op(1)

Note that

cnn =

∫
exp

(
− ε

2∆

∥∥∥∥∥∇Ln

(
θ̂ +

z

n

)∥∥∥∥∥
)
dz

By assumption 1, Ln is strongly convex, so〈
∇Ln

(
θ̂ +

z

n

)
−∇Ln(θ̂)︸ ︷︷ ︸

=0

,
z

n

〉
≥ nα

∥∥∥∥ zn
∥∥∥∥2
2

Then by Cauchy-Schwarz, ∥∥∥∥∥∇Ln

(
θ̂ +

z

n

)∥∥∥∥∥
2

≥ nα

∥∥∥∥ zn
∥∥∥∥
2

By the equivalence of norms on Rd, we have

−

∥∥∥∥∥∇Ln

(
θ̂ +

z

n

)∥∥∥∥∥ ≤ −cα∥z∥2
for some constant c (it may depend on dimension d). Since exp

(
−εcα
2∆
∥z∥2

)
is integrable, by the

dominated convergence theorem, the constants cnn converge to a non-zero finite quantity. So, the
density converges

fn(z)→ f(z) ∝ exp

(
− ε

2∆

∥∥Σ−1z
∥∥)

■

Remark 7.8. If we replace the base measure with some probability measure, we can drop strong
convexity, resulting in unique solution to some equation. The base measure will appear in the final
result.

Example 7.7 (Linear Regression). Observe (Xi, yi) where Xi ∈ Rd and yi ∈ R. Set

yi = X⊤
i θ + ei

where ei
i.i.d.∼ mean zero, uncorrelated. Assume for all i = 1, · · · , n and j = 1, · · · , d,

− 1 ≤ Xij ≤ 1

− 1 ≤ yi ≤ 1

∥θ∗∥1 ≤ B,
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where θ∗ is the true value. For least squares, we set L(θ | D) =
n∑

i=1

(yi −X⊤
i θ)

2. kNG requires a

bound on the gradient’s sensitivity∥∥∇Ln(θ | D)−∇Ln(θ | D′)
∥∥ ≤ sup

y1,X1,θ
4
∥∥∥(y1 −X⊤

1 θ)X1

∥∥∥
≤ sup

X1

4(1 +B)∥X1∥

by using∥·∥∞ and the fact that∥X1∥∞ ≤ 1, thereby giving ∆ = 4(1+B). Then kNG samples from

fn(θ) ∝ exp

− ε

8(1 +B)

∥∥∥∥∥∥
n∑

i=1

(yi −X⊤
i θ)X

⊤
i

∥∥∥∥∥∥
∞


w.r.t the uniform measure on Θ =

{
θ
∣∣∥θ∥1 ≤ B

}
. Then, Theorem 7.12 says that the noise due to

kNG is only Θp

(
1

n

)
.
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8 Subsample and Aggregate

The main reference for this chapter is Smith [2011].

What to do when we have a function that has arbitrary or difficult to analyze sensitivity? We
would still want to use a function that is ”usually” insensitive in practice. This is also referred to be
the Black Box approach.

8.1 Algorithm of Subsample and Aggregate

X1, · · · , Xn

X1, · · · , Xn/k Xn/k+1, · · · , X2n/k X(n−1)n/k, · · · , Xn· · ·

f f f· · ·

M

· · ·
z1

z2
zk

Deterministic
Statistics

Mechanism with
private aggregation

SA(X)

In Subsample and Aggregate [Smith, 2011], the n rows of X are partitioned into k blocks
B1, · · · , Bk, each of size ≈ n/k. The function f is computed exactly on each block. Then the
intermediate results

(z1, · · · , zk) = (f(B1), · · · , f(Bk))

are combined in a DP aggregation mechanism (e.g. DP version of α-trimmed, winsorized mean and
median).

Remark 8.1 (Key Observation).

• One person can affect only one block and therefore only one f(Bi). Even if f is arbitrary, the
analyst can choose a DP aggression algorithm (independent of database).

• Privacy is easy: if the aggregation mechanism M is (ε, δ)-DP (change on one f(Bi)), then
so is SA(X). However, in general, it can be difficult to analyze the utility of SA(X), since
we still need some type of worst case sensitivity calculation.
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• With iid data and ”generally normal” Statistics, privacy can be achieved at no asymptotic
cost.

Theorem 8.1 (Privacy Preserving Statistical Estimation with Optimal Convergence Rates: Smith
[2011]). Informally: if X1, · · · , Xn are i.i.d. and if T (X1, · · · , Xn), appropriately rescaled and con-
verges to a normal distribution as n→∞, then one can design a DP mechanism MT (X1, . . . , Xn)
which converges to the same asymptotic distribution.

8.2 Asymptotic Analysis

Definition 8.1 (Generic Asymptotic Normality). A statistic T : X n → R is
generally asymptotically normal at distribution P if there exists T (P ) and variance σ2

p > 0

such that if X1, · · · , Xn
i.i.d.∼ P ,

1. Normality:
T (X)− T (P )

σp/
√
n

d−→ N (0, 1).

2. Linear Bias: E
[
T (X)− T (P )

]
= O(1/n).

3. Bounded Third Moment: E
|T (X)− T (P )|

σp/
√
n

3

= O(1)

Remark 8.2. • We can generalize Definition 8.1 to Rd (d > 1), by replacing σ2
p with a positive

definite matrix Σp and updating the conditions analogously.

• Properties 2 and 3 of Definition 8.1 ensure that functional of T (X), such as the mean and
variance converge to what we want. For example, MLE, Sample mean of function, Regression
estimators, m-estimators, etc.

Theorem 8.2. Given T : X n →
[
−Λ

2
,
Λ

2

]d
, there exists an ε-DP mechanism MT,ε,Λ such

that if T is generally asymptotically normal at P , then

√
nΣ

− 1
2

p

(
T (X)− T (P )

)
−
√
nΣ

− 1
2

p

(
M(X)− T (P )

) d−→ 0

i.e., M(X) has the same asymptotic distribution as T (X). This also implies

M(X)− T (X) = op

(
1√
n

)
Furthermore, there exists c > 0 such that convergence still holds if d, ε,Λ change with n, so
long as d, 1/ε, and log Λ are all at most nc.

Remark 8.3. If no Λ is known, we can change the result to (ε, δ)-DP.
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Algorithm 1: The algorithm for Theorem 8.2

Input: X = (X1, · · · , Xn) and function T : X n → Rd.

1 Set k = n
1
2
−η where η = 1/10 /* so k = o(

√
n) */

2 Randomly divide X into k blocks X(1), · · · , X(k) of size n/k.

3 Compute zi = T (X(i)) for each block.
4 for each dimension j = 1, · · · , d do
5 Call z|j the projection of z = (z1, · · · , zk).
6 Call Mj = W (z|j, ε/d) where W is the noisy widened winsorized mean (DP step).

7 end for
Output: M = (M1, · · · ,Md)

Algorithm 2: The algorithm for Noisy Widened Winsorized Mean

Input: z = (z1, · · · , zk) ∈ Rk, ε > 0, Λ > 0 (will clamp to [0,Λ]).

1 Set rad = k
1
3
+η where η = 1/10 /* so rad ≈ Ω(k1/3) */

2 /* First estimate the range of z, [l, u], and use exp. mech. to estimate

quantiles */

3 /* PrivateQuantile is an exponential mechanism for a quantile. z is for

values, 1/4 is for the target quantile, ε/4 is for privacy budget, and Λ is

for bound. */

4 â = PrivateQuantile

(
z,

1

4
,
ε

4
,Λ

)
and b̂ = PrivateQuantile

(
z,

3

4
,
ε

4
,Λ

)
5 Mcrude =

â+ b̂

2
and Iqrcrude = |̂b− â| /* Iqrcrude ≈ Θ

(
1√
n/k

)
, interquartile range */

6 u←Mcrude + 4 · rad · Iqrcrude
7 l←Mcrude − 4 · rad · Iqrcrude
8 /* u and l forms an approximate range of z. */

9 /* Next, compute winsorized/clamped mean for range [l, u] */

10 Let µ̂ =
1

k

k∑
i=1

zi]
u
l , where x]

u
l is the clamp function.

11 Sample L ∼ Lap

(
0,

2(u− l)
kε

)
/* sensitivity = (u− l)/k, budget = ε/2. */

Output: W (z) = µ̂+ L

Recall that the clamp function was defined to be

x]ul =


l if x < l

x if l ≤ x ≤ u

u if x > u
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Algorithm 3: Algorithm for PrivateQuantile(z, α, ε)

Input: z = (z1, · · · , zk) ∈ Rk, quantile α = (0, 1), ε > 0, and bound Λ
Output: X drawn from the density proportional to

exp

(
−ε
2

∣∣αk −#{i | zi ≤ X}
∣∣)1(−Λ

2
≤ X ≤ Λ

2

)

Algorithm 4: Sampling Algorithm

Input: z = (z1, · · · , zk) ∈ Rk, quantile α = (0, 1), ε > 0, and bound Λ
1 Sort zi in ascending order.

2 Replace zi < −
Λ

2
with −Λ

2
and zi >

Λ

2
with

Λ

2
.

3 Define z0 = −
Λ

2
and zk+1 =

Λ

2
. for i = 0, · · · , k do

4 yi = (zi+1 − zi) exp
(
−ε|i− αk|

)
5 end for

6 Sample an integer i ∈ {0, · · · , k} with probability
yi∑k
i=0 yi

.

Output: a uniform draw from zi+1 − zi.

Remark 8.4. Consider the rate of L ∼ Lap
(
0, 2(u−l)

kε

)
from Algorithm 2,

|u− l|
k

= O

(
k−( 1

3
+η)

k

)
= O(k−1− 1

3
−η)

Plugging k = n1/2−η with η = 0.1, we get

|u− l|
k

= O(n−0.57),

which is barely o(n− 1
2 ). So the noise does go away asymptotically but slowly.
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9 Technique of (ε, δ)-DP Proof

Recall that our (ε, δ)-DP definition relies on the two random variables M(X) and M(X ′). Let
fM(X) and fM(X′) be the densities/PMFs of M(X) and M(X ′) respectively, then

LM(X)∥M(X′) = log

(
fM(X)(y)

fM(X′)(y)

)
,

where y ∼M(X), is the privacy loss random variable (PLRV) for X and X ′ under M .

It is easy to see that M satisfies ε-DP if and only if

Pr
[
LM(X)∥M(X′) ≤ ε

]
= 1,

for all H(X,X ′) ≤ 1. In fact, it can be seen that (ε, δ)-DP can be written in terms of the privacy
loss random variable.

9.1 Hockey-Stick Divergence

Definition 9.1. The Hockey-Stick divergence for α > 0,

Hα(P∥Q) = Ey∼Q

[
dP

dQ
(y)− α

]
+

where [x]+ = x1(x ≥ 0) and
dP

dQ
is the Radon-Nikodym derivative (or ratio of densities) of

P with respect to Q.

Theorem 9.1. M satisfies (ε, δ)-DP if and only if

sup
H(X,X′)≤1

Heε(M(X ′)∥M(X)) ≤ δ

Proof. Let S :=

{
y

∣∣∣∣ dM(X ′)

dM(X)
(y) ≥ eε

}
.

(=⇒) We prove for the continuous case. Consider

Heε(M(X ′)∥M(X)) = Ey∼M(X)

[
dM(X ′)

dM(X)
(y)− eε

]
+

=

∫
dM(X′)
dM(X)

(y)≥eε

(
dM(X ′)

dM(X)
(y)− eε

)
dM(X)(y)

=

∫
dM(X′)
dM(X)

(y)≥eε

(
dM(X ′)(y)− eεdM(X)(y)

)
= Pr[M(X ′) ∈ S]− eε Pr[M(X) ∈ S]
≤ δ.
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(⇐=) Let T be an arbitrary set. Consider T1 = T ∩ S ⊆ S and T2 = T ∩ Sc ⊆ Sc. Then,

Pr[M(X ′) ∈ T1]− eε Pr[M(X) ∈ T1] =
∫
T1

(
dM(X ′)

dM(X)
(y)− eε

)
dM(X)(y)

≤
∫
S

(
dM(X ′)

dM(X)
(y)− eε

)
dM(X)(y)

= Heε(M(X ′)∥M(X))

=≤ δ,

by the Hockey-Stick Divergence. Moreover,

Pr[M(X ′) ∈ T2] =
∫
T2

dM(X ′)(y) ≤
∫
T2

eεdM(X)(y) = eε Pr[M(X) ∈ T2]

Therefore, combining the two inequalities we get

Pr[M(X ′) ∈ T ] = Pr[M(X ′) ∈ T1] + Pr[M(X ′) ∈ T2]
≤ eε Pr[M(X) ∈ T1] + δ + eε Pr[M(X) ∈ T2]
= eε Pr[M(X) ∈ T ] + δ ■

Remark 9.1. Note that the Hockey-Stick divergence only depends on
dM(X ′)

dM(X)
(y), which is exp

(
−LM(X′)∥M(X)

)
,

a function of the privacy loss random variables.

9.2 A Lemma for (ε, δ)-DP Proof Technique

Lemma 6. If LM(X′)∥M(X) satisfies

Pr[LM(X′)∥M(X) ≥ ε] ≤ δ

for all H(X,X ′) ≤ 1, then M satisfies (ε, δ)-DP.

Proof. Let R =

y
∣∣∣∣∣∣ log

(
fM(X)(y)

fM(X′)(y)

)
≤ ε

 and S be given. Then, we can split S into two

regions with R and Rc and consider their probabilities

Pr[M(X) ∈ S] = Pr[M(X) ∈ S ∩R] + Pr[M(X) ∈ S ∩Rc]︸ ︷︷ ︸
≤δ

(9.2)

Note that

Pr[M(X) ∈ S ∩R] =
∫
S∩R

fM(X)(y)dy

≤
∫
S∩R

eεfM(X′)(y)dy (∵ S ∩R ⊆ R)

= eε Pr[M(X ′) ∈ S ∩R]
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and Pr[M(X) ∈ S ∩Rc] ≤ δ. Hence, Eq. (9.2) becomes

Pr[M(X) ∈ S] = Pr[M(X) ∈ S ∩R] + Pr[M(X) ∈ S ∩Rc]

≤ eε Pr[M(X ′) ∈ S ∩R] + δ

≤ eε Pr[M(X ′) ∈ S] + δ ■

Remark 9.2. It is a relatively crude bound (i.e. not tight), so it is useful on proving the rate but
not so on improving its constant.

9.3 Gaussian Mechanism

Let f : X n → Rd be a d-dimensional function, and let

∆2f = max
H(X,X′)≤1

∥∥f(X)− f(X ′)
∥∥
2

be its ℓ2-sensitivity. The Gaussian mechanism with parameter σ adds independent noise ∼ N
(
0, σ2

)
to each of the d-components of the output of f .

Theorem 9.3. Let ε ∈ (0, 1) and δ ∈ (0, 1] for c2 > 2 log

(
1.32

δ

)
, then the Gaussian

mechanism with parameter σ ≥ c∆2f

ε
is (ε, δ)-DP.

Remark 9.3. Instead of 1.32, 1.25 is the constant usually used in the literature but there might be
an error in Dwork and Roth [2014].

Proof. We will prove the one dimensional case. The PLRV in the worst case is

± log

 exp
(
− y2

2σ2

)
exp
(
− (y+∆f)2

2σ2

)
,

where y ∼ N
(
0, σ2

)
.

We will take the absolute value. The goal is to find a set S with probability (at least) 1 − δ

such that

∣∣∣∣∣∣∣log
 exp

(
− y2

2σ2

)
exp
(
− (y+∆f)2

2σ2

)

∣∣∣∣∣∣∣ ≤ ε. Consider

∣∣∣∣∣∣∣log
 exp

(
− y2

2σ2

)
exp
(
− (y+∆f)2

2σ2

)

∣∣∣∣∣∣∣ =

∣∣∣∣− 1

2σ2
(y2 − (y +∆f)2)

∣∣∣∣ = ∣∣∣∣− 1

2σ2
(2y∆f + (∆f)2)

∣∣∣∣,
which is bounded by ε when |y| < σ2ε

∆f
− ∆f

2
.
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We want to show Pr

[
|y| ≥ σ2ε

∆f
− ∆f

2

]
< δ when y ∼ N

(
0, σ2

)
. It suffices to find σ2 such

that

Pr

[
y ≥ σ2ε

∆f
− ∆f

2

]
<
δ

2
.

We assume that ε ≤ 1 ≤ ∆f . Recall that

Pr[X > t] ≤ σ√
2π

1

t
e−

t2

2σ2

which holds because

Pr[X > t] =
1√
2π

∫ ∞

t

e−
x2

2 dx ≤ 1√
2π

∫ ∞

t

x

t
e−

x2

2 dx =
1√
2π

1

t
e−

t2

2

and we want
σ√
2π

1

t
e−

t2

2σ2 <
δ

2
,

where t = σ2ε
∆f
− ∆f

2
. In other words,

σ√
2π

1

t
e−

t2

2σ2 <
δ

2
⇐⇒ σ

t
e−

t2

2σ2 <
√
2π
δ

2

⇐⇒ log

(
t

σ

)
+

t2

2σ2
> log

(
2√
2πδ

)

⇐⇒ log

 σ2ε
∆f
− ∆f

2

σ


︸ ︷︷ ︸

=:A

+

(
σ2ε
∆f
− ∆f

2

)2
2σ2︸ ︷︷ ︸
=:B

> log

(
2√
2πδ

)
= log

(√
2

π

1

δ

)
.

We write σ =
c∆f

ε
in such a from based on our previous experience. We want to bound c.

For the A term, we want to find conditions such that A is non-negative.

σ2ε
∆f
− ∆f

2

σ
=

1

σ

(
c2∆f 2

ε2
ε

∆f
− ∆f

2

)
=

ε

c∆f

(
c2
∆f

ε
− ∆f

2

)
= c− ε

2c

Assume c ≥ 1, then since ε ≤ 1, we have

c− ε

2c
≥ c− 1

2
.

So, A > 0 provided that c ≥ 3

2
(because c− ε

2c
≥ c− 1

2
≥ 1).

For the B term,

1

2σ2

(
σ2ε

∆f
− ∆f

2

)2

=
1

2σ2

∆f

(
c2

ε
− 1

2

)2

=
1

2

ε2

c2∆f 2
∆f 2

(
c2

ε
− 1

2

)2

=
1

2

(
c2 − ε+ ε2

4c2

)
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c2 − ε+ ε2

4c2
is quadratic in ε with minimum at ε = 2c2 ≥ 9/2 > 1. So, subject to ε ≤ 1 and

c ≥ 3/2, it is minimized at ε = 1

c2 − ε+ ε2

4c2
≥ c2 − 1 +

1

4c2
≥ c2 − 1

So it suffices to show

c2 − 1 ≥ 2 log

(√
2

π

1

δ

)

⇐⇒ c2 ≥ log

(√
2

π

1

δ

)
+ 2 log(

√
e) = 2 log

(√
2e

π

1

δ

)
≥ 2 log

(
1.32

δ

)

because
√
2e/π ≤ 1.32. So we conclude that when c2 = max

{
2 log

(
1.32

δ

)
,
3

2

}
,

Pr

[
|y| ≥ σ2ε

∆f
− ∆f

2

]
< δ,

where σ =
c∆f

ε
and conclude that the PLRV is bounded by ε w.p. 1 − δ. So by Lemma 6,

Gaussian mechanism satisfies (ε, δ)-DP. ■

Remark 9.4. Claim from Dwork and Roth [2014]:

c2 − ε+ ε2

4c2
≥ c2 − 8

9
,

which is false c = 100 and ε = 1.

Example 9.1. Suppose that T : X n → Zd consists of several (d) count statistics, then

∆1T = d

∆2T =
√
d

• Laplace mechanism adds Op(d/ε) noise to get ε-DP.

• Gaussian mechanism adds Op(
√
d log(1/δ)/ε) noise to get (ε, δ)-DP.

The improved dependence on d is a key difference between ε-DP and (ε, δ)-DP.
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10 Composition in Approximate DP

10.1 Pure versus Approximate DP

ε-DP is:

Pros:

• Original DP definition

• Relatively easy to interpret and prove

• Strong(er) privacy guarantee

Cons:

• Requires relatively heavy tailed noise

• Poor scaling with dimension

On the other hand, (ε, δ)-DP is:

Pros:

• Allows subgaussian noise

• Better scaling with dimension

Cons:

• (Generally) harder to interpret and prove

• Ignores events with small probability

Example 10.1 (”Between pure and approximate DP”: Steinke and Ullman [2016]). For a database
D ∈ {±1}n×d, the D, one-way marginals are the means of the bits in the d columns

D =
1

n

n∑
i=1

Di ∈ [±1]d

where Di is the i-th row of D. We call a mechanism M accurate on input D if its output is ”close”
to D, i.e. ∥∥∥M(D)−D

∥∥∥
1
≤ αd

Under ε-DP, to achieve EM

∥∥∥M(D)−D
∥∥∥
1
≤ αd, we require n = Ω

(
d

αε

)
. But under (ε, δ)-DP,

we require n = Ω

(√
d log(1/δ)

αε

)
. Hence, if we have large d,

• For ε-DP, we need n = Ω(d).
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• But for (ε, δ)-DP, we only need n = Ω(
√
d).

Remark 10.1 (Connection to Composition).

• Recall that when composing k ε-DP mechanism, joint release satisfies (kε, 0)-DP.

• We learned that composing k (ε, δ)-DP mechanisms gives (kε, kδ)-DP.

10.2 Advanced Composition

The main reference for this section is Dwork and Roth [2014].

First, we need to clarify what is meant by ”composition.”

(1) Repeated used of DP mechanism on the same dataset (could be repeated use of the same
mechanism or a modular constructor).

(2) Repeated use of DP mechanism on different databases that may contain information on the
same individual.

– Reason about cumulative privacy loss of an individual across datasets.

– The adversary could influence the makeup of future datasets.

The composition model allow the adversary to

(1) adaptively affect the database input in the mechanisms.

(2) choose the queries based on past outputs.

Let f be a family of databases access mechanisms (e.g. set of all ε-DP mechanisms). For a
probabilistic adversary A, consider experiment 0 and experiment 1.

Algorithm 5: Experiment b for family f and adversary A
1 for i = 1, · · · , k do
2 A outputs two adjacent databases X0

i and X1
i , a mechanism Mi ∈ f and possible

parameters wi.
3 A receives yi ∈Mi(X

b
i , wi).

4 end for

Note that the adversary A gets to choose the adjacent databases (that they want to distinguish
from), mechanisms, and parameters based on previous outputs.

Call (y1, y2, · · · , yk) to be A’s view of the experiment (the Xj
i ’s,Mi’s, and wi’s are all a function

of (y1, y2, · · · , yk)).
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Definition 10.1. We say that the family f satisfies (ε, δ)-DP under k-fold adaptive com-
position if for every A,

Pr[y0 ∈ S] ≤ eε Pr[y1 ∈ S] + δ ∀S

where y0 and y1 are A’s view under experiment 0 and 1 respectively.

Theorem 10.1 (Advanced Composition). For all ε, δ, δ′ ≥ 0, the class of (ε, δ)-DP mecha-
nisms satisfies (ε′, kδ + δ′)-DP under k-fold adaptive composition where δ′ is arbitrary and

ε′ =
√
2k log(1/δ′)ε+ kε (eε − 1)︸ ︷︷ ︸

≈ ε when ε is small

Remark 10.2. The (ε, δ) in the class of (ε, δ)-DP is fixed across iterations. Essentially, by sacrificing
a proper amount of δ′, we are able to improve the privacy from kε to O(

√
kε).

Corollary 10.1. Given a target 0 < ε′ < 1 and δ′ > 0, to ensure (ε′, kδ + δ′) cumulative
privacy loss over k mechanisms, it suffices that each of the k mechanisms is (ε, δ)-DP where

ε =
ε′

2
√

2k log(1/δ′)

Theorem 10.2 (Murtagh and Vadhan [2016]). Given k arbitrary (ε1, δ1), · · · , (εk, δk)-DP
mechanisms, computing

inf
ε

{
ε
∣∣ (M1, · · · ,Mk) is (ε, δ)-DP

}
for a given δ is #P-Complete.

Remark 10.3. Note that

• NP refers to ”are there any solution with respect to certain constraints?”;

• #P refers to ”how many solutions are there?”

The bed new is NP is already ”hard”, while #P is even harder and #P-Complete is even worse!
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11 DP SGD

11.1 Privacy Amplification

Main references for this lecture are Smith [2009] and Kasiviswanathan et al. [2008].

Subsampling is a very powerful method in DP. In pure-DP, we (mostly) work in the framework of
unbounded-DP (add/delete-DP). Suppose M is a 1-DP mechanism and M ′( · ; ε) which operates
as follows:

Algorithm 6: M ′( · ; ε) – Amplification via Subsampling

Input: 1-DP mechanism M , database X, ε ∈ (0, 1]
1 Construct T ⊆ X by selecting each element of X independently with probability ε.
Output: M(T )

Proposition 11.1 (Amplification via Subsampling). If M is 1-DP then for ε ∈ (0, 1],
M ′( · ; ε) in Algorithm 6 is 2ε-DP (technically, we can get (e− 1)ε-DP).

Proof of Proposition 11.1. Fix an event S in the output sapce of M ′ and two adjacent databases
X and X ′, where we assume the individual i is in X but not in X ′.

Consider a run of M ′ on X.

(1) If i is not included in T .

Then the output is distributed the same as a run of M ′ on X ′ = X \ {i} (conditioning on
the event i /∈ T ) since the inclusion of i in T is independent of the inclusion of the other
elements.

Let pX be the distribution of M ′(X) and pX′ be the distribution of M ′(X ′), then

pX(S | i /∈ T ) = pX′(S)

(2) If i is in T .

Then the behavior of M is within a factor of e1 from the behavior of M on T \ {i}.
Furthermore, by independence, the distribution of T \ {i} is the same distribution of T
conditioned on the omission of {i}.

e−1pX′(S) ≤ pX(S | i ∈ T ) ≤ e1pX′(S)

Then, an upper bound of pX(S) is

pX(S) = (1− ε)pX(S | i /∈ T ) + εpX(S | i ∈ T )
≤ (1− ε)pX′(S) + εe1pX′(S)

= [1 + ε(e− 1)]pX′(S) (11.1)

At x = 0, tangent line of exp(2ε) is 1 + 2ε and is a lower bound, so

1 + (e− 1)ε ≤ 1 + 2ε ≤ exp(2ε)
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because e− 1 ≤ 2. So 1 + (e− 1)ε is a weaker lower bound and hence

Eq. (11.1) ≤ e2εpX′(S);

a tighter result is exp((e− 1)ε).

For a lower bound, we can do the following

pX(S) = (1− ε)pX(S | i /∈ T ) + εpX(S | i ∈ T )
≥ (1− ε)pX′(S) + εe−1pX′(S)

= (1− ε(1− e−1))pX′(S)

≥ exp(−ε)pX′(S)

because from the secant line of exp(−ε) at points (0, 1) and (1, e−1), we can see that it is
upper bound to e−ε by convexity. Thus,

y − 1 =
1− e−1

0− 1
(ε− 0)

gives y = 1− ε(1− e−1) as its upper bound.

In conclusion, we get (e− 1)ε-DP, thereby implying 2ε-DP. ■

Remark 11.1. We can also start with c-DP, for any c, but retain elements with probability ≈ εe−c

and c ≥ 1.

Remark 11.2 (Two Interpretations of Proposition 11.1).

(1) Design of Mechanism: By ignoring some data, we boost the privacy of the mechanism at
the cost of some utility. With more advanced sampling and composition results, this can be
powerful.

(2) Interpretation of survey design: If our data were collected in a simple random sample
from some population of size N and if it is reasonable to model the inclusion of an indi-
vidual as independent Bernuolli and the sample itself will remain secret, then we get privacy
amplification ”for free” called ”secrecy of the sample”.

This type of sampling where each individual is included independently is sometimes called Poisson
sampling. More generally, subsampling with (ε, δ)-DP results in (O(qε), qδ)-DP, where q = L

N
is

the subsampling rate.

11.2 Algorithm of DP SGD

The motivating question is – where to put the noise? There have been a few options:

• Perturb data/sufficient statistics: e.g. regression, exponential form, etc.

• Alter the objective functions: exponential mechanism (and KNG), optimize in a noisy way
(functional mechanism, objective perturbation).
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• Build a mechanism density based on objective.

DP Stochastic Gradient Descent (DP SGD) introduces noise into steps of an algorithm! In this
way, we can handle very complicated objectives and high dimensional parameteres (e.g. deep neural
network).

Algorithm 7: DP SGD (with bounded DP)

Input: Dataset X = (X1, · · · , Xn) and loss function L(θ,X) differentiable in θ.
Parameter: Initial state θ0, learning rate ηt, batch size m, time horizon T , noise scale σ,

and gradient clipping bound C.
1 for t = 1, · · · , T do
2 Sub(set)sampling: Take It ⊆ {1, · · · , n} of size m uniformly at random.
3 for i ∈ It do
4 Compute gradient: V

(i)
t = ∇θL(θt, Xi).

5 Clip gradient: V
(i)

t =
V

(i)
t

max
{
1,

∥V (i)
t ∥2
C

} .
6 Average, perturb, and descend: θt+1 = θt − ηt

 1

m

t∑
i=1

V
(i)

t +N

(
0,

4σ2C2

m2
I

).

/* Sensitivity of
1

m

t∑
i=1

V
(i)
t is

2C

m
. */

7 end for

8 end for
Output: θT or the whole (θ0, · · · , θT ) for analysis.

Remark 11.3. 1. DP SGD was first proposed by Song et al. [2013]. It

• was limited by ε-DP, so it cannot afford many accurate iterations

• did not leverage privacy amplification by subsampling

2. In Bassily et al. [2014]

• DP SGD improved using (ε, δ)-DP and subsampling

• It matches lower bounds

• But its constraints/logarithmic factors were not optimized

3. Abadi et al. [2016]

• first practical implementation of DP SGD

• Most significant contribution is ”Moments Accountant” for tighter composition

The only downside of the DP SGD is that it has a bunch of parameters.
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11.3 Moments Accountant

The main reference for this section is Abadi et al. [2016].

Recall that (ε, δ)-DP is implied by a tail bound on the PLRV for mechanism M

PLRV(y;M, aux, D,D′) = log
P (M(aux, D) = y)

P (M(aux, D′) = y)

is a RV where y ∼M(aux, D) usually for adjacent D,D′.

Note that the composition of mechanisms results in the sum of the PLRVs: let M1:i denote
(M1, . . . ,Mi) and y1:i = (y1, . . . , yi)

PLRV(y1:k;M1:k, y1:k−1, D,D
′) = log

P [M1:k(D; y1:(k−1)) = y1:k]

P [M1:k(D′; y1:(k−1)) = y1:k]

= log
k∏

i=1

P [Mi(D) = yi |M1:(i−1)(D) = y1:(i−1)]

P [Mi(D′) = yi |M1:(i−1)(D′) = y1:(i−1)]

=
k∑

i=1

PLRV(yi;Mi, y1:(i−1), D,D
′)

Remark 11.4. Two observations: Moment generating functions (MGF)

1. behave nicely for sums MX+Y (t) =MX(t)MY (t)

2. can give fairly tight tail bounds via Markov/Chernoff bounds

Q: Are PLRVs independent with sequential compositions?

Definition 11.1. Define

1. the λth moment as the the cumulant generating function of the PLRV, that is,

αM(λ; aux, D,D′) = logEy∼M(aux,D) exp(λ PLRV(y;M, aux, D,D′))

2. its max over all possible aux and neighboring datasets D,D′

αM(λ) = max
aux,D,D′

αM(λ; aux, D,D′).

This addresses possible concern with sequential composition.
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Theorem 11.2. 1. Composition: Suppose M consists of a sequence of adaptive mecha-

nisms M1, . . . ,Mk, where Mi : (
∏i−1

j=1 Yj)×D → Yi, then

αM(λ) ≤
k∑

i=1

αMi
(λ)

2. Tail bound: for any ε > 0, M is (ε, δ)-DP for

δ = min
λ

exp (αM(λ)− λε)

Proof. 1. is a standard property of cumulant generating functions because the PLRV is a sum

2.

Py∼M(D)(PLRV(y) ≥ ε) = P (exp(λ PLRV) ≥ exp(λε))

≤ E exp (λ PLRV)

exp(λε)

≤ exp(α− λε)

from the previous lemma for (ε, δ)-DP completes the proof.

■

Lemma 7. Suppose f : D → Rp with ∥f(·)∥2 ≤ 1. Let σ ≥ 1 and let J be a sample
from [n] where each i ∈ [n] is chosen independently with probability q ≤ 1

16σ
. Then, for any

0 < λ < σ2 log 1
qσ
, the mechanism M(D) =

∑
i∈J f(di) +N(0, σ2I) satisfies

αM(λ) ≤ q2λ(λ+ 1)

(1− q)σ2
+O

(
q3λ3

σ3

)
.

Theorem 11.3. [Abadi et al., 2016] There exists constants c1, c2 given the sampling proba-
bility q = L

N
and # of iterations T , such that for any ε < c1q

2T , DP SGD is (ε, δ)-DP for
any δ > 0 if (we choose)

σ ≥
c2q
√
T log(1/δ)

ε
.

Using Advanced Composition, we can get σ = Ω(
q
√

T log(1/δ) log(T/δ)

ε
). So, Moments Accountant

has a tighter results and, in fact, Moments Accountant motivated Rényi-DP.
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Remark 11.5 (Analysis of Algorithm 7). Let V be the vector space for θ andM : X n×V → V
from lines 3-6 in Algorithm 7. Then, in iteration t, M(XIt , θt) = θt+1 where XIt denotes the
subset of X indexed by It.
Combining M with the subsampling step (line 2 in Algorithm 7), then Noisy SGD

Noisy SGD : X n → V × · · · × V
X 7→ (θ1, · · · , θT )

which is the composition of T copies of M̃ , since,

θj+1 = M̃(X, θj) for j = 0, 1, · · · , T − 1

If M satisfies f -DP, then M̃ is Cm/n(f)-DP. So, the composition is
[
Cm/n(f)

]⊗T
-DP.

Note that M satisfies
1

σ
-GDP, since

1

m

t∑
i=1

V
(i)

t has sensitivity
2c

m
(called change-DP).

Remark 11.6. However, composition with tradeoff functions is hard. Let us try dominating pairs.
P = N

(
0, σ2

)
and Q = N

(
1, σ2

)
is a tightly dominating pair for M (under change-DP). Then by

the previous result (Theorem 14.3),

(P, (1− γ)P + γQ) is dominating for M̃ under add

((1− γ)P + γQ,Q) is dominating for M̃ under remove

For composition, we can use characteristic unctions of the PLRVs

PLRV1 = log

(
ϕ
(
X
σ

)
(1− γ)ϕ

(
X
σ

)
+ γϕ

(
X−1
σ

)) , X ∼ N
(
0, σ2

)
PLRV2 = log

(
(1− γ)ϕ

(
X
σ

)
+ γϕ

(
X−1
σ

)
ϕ
(
X
σ

) )
, X ∼ (1− γ)N

(
0, σ2

)
+ γN

(
1, σ2

)
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12 Renyi Differential Privacy

The main references for this lecture are Bun and Steinke [2016] and Mironov [2017].

For the two main purposes of (ε, δ)-DP (Gaussian mechanism and composition), the analysis
of (ε, δ)-DP is cumbersome and not tight. Potentially, an alternative framework can achieve these
with a tighter privacy guarantee.

Recall that DP measures whether the distribution M(X) and M(X ′) are ”close”. We could use
different measure of this ”closeness.”

Definition 12.1 (Rényi-Divergence). For two probability distributions P and Q over the same
space Y , the Rényi divergence of order α > 1 is

Dα(P∥Q) =
1

α− 1
log

EX∼Q

[(
p(X)

q(X)

)α
]

where p(X) and q(X) are the densities at X.

Remark 12.1. •

D1(P∥Q) = lim
α→1

Dα(P∥Q) = EX∼P

[
p(X)

q(X)

]
,

which is the KL-divergence, and

•

D∞(P∥Q) = sup
X∈Supp(Q)

[
log

P (X)

Q(X)

]
,

which is related to ε-DP in the following way: M satisfies (ε, 0)-DP if and only if

D∞(M(X)∥M(X ′)) ≤ ε

for all H(X,X ′) ≤ 1.

Remark 12.2 (Fact). Dα1(P∥Q) ≤ Dα2(P∥Q) for α1 ≤ α2.

The following definition is an relaxation of (ε, 0)-DP:

Definition 12.2 ((α, ε)-Renyi-DP, or (α, ε)-RDP). A mechanism M satisfies (α, ε)-RDP if

Dα(M(X)∥M(X ′)) ≤ ε

for all H(X,X ′) ≤ 1.

Usually, people give a function (α, ε(α))-DP.
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12.1 Interpreting Rényi DP

Let S be a measurable subset of outcomes. Recall that under ε-DP,

Pr[M(X) ∈ S] ≤ eε Pr[M(X ′) ∈ S]

So, the probability of S goes up by at most a factor of eε.

Proposition 12.1. If M is (α, ε)-RDP,

e−ε
(
Pr[M(X ′) ∈ S]

) α
α−1 ≤ Pr[M(X) ∈ S] ≤

(
eε Pr[M(X ′) ∈ S]

)α−1
α

We still get a bound on how much the probability of S increases or decreases, but it is not as
simple.

Theorem 12.1 (Conversion from ε-DP to (α, ε)-RDP). If M satisfies ε-DP then it satisfies(
α,
αε2

2

)
-RDP for all 1 ≤ α <∞.

Theorem 12.2 (Conversion from (α, ε)-RDP to ε-DP). If M satisfies (α, ε)-RDP then it

satisfies

(
ε+

log(1/δ)

α− 1
, δ

)
-DP for any 0 < δ < 1.

RDP implies a family of (ε, δ)-DP guarantee, avoiding the possibility of catastrophic failure at
small probability. So overall, we have a sort of ”sandwich”

ε-DP =⇒ RDP =⇒ family of (ε, δ)-DP︸ ︷︷ ︸
where ε<∞ for all δ∈(0,1)

=⇒ (ε, δ)-DP

Remark 12.3. Just as (ε, δ)-DP, RDP is robust against post-processing.

Theorem 12.3 (Adaptive Composition). Let M1 : X n → Y be (α, ε1)-RDP mechanism, and
M2 : (Y ,X n) → Z be (α, ε2)-RDP. Then M3, which jointly release the output of M1 and
M2, is (α, ε1 + ε2)-RDP.

Proof. Fix H(D,D′) = 1 for the databases D and D′, write

Y (y) as the distribution of M1(D)

Z(z | y) as the (conditional) distribution of M2(D | y)
W (y, z) as the joint distribution of M3(D)

Write Y ′, Z ′, W ′ when D changes to D′. Then we can write joint distribution in terms of marginal
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and conditional distribution as follows

exp
(
(α− 1)Dα(M3(D)∥M3(D

′))
)
= EW ′

(
W

W ′

)α

=

∫
Y×Z

[
W (y, z)

]α[
W ′(y, z)

]1−α
dy dz

=

∫
Y

∫
Z

(
Y (y)Z(z | y)

)α(
Y ′(y)Z ′(z | y)

)1−α
dz dy

=

∫
Y
Y (y)αY ′(y)1−α

(∫
Z
Z(z | y)αZ ′(z | y)1−α dz

)
dy

≤
∫
Y
Y (y)αY ′(y)1−α exp

(
(α− 1)ε2

)
dy

≤ exp
(
(α− 1)ε1

)
exp
(
(α− 1)ε2

)
= exp

(
(α− 1)(ε1 + ε2)

)
since M2 satisfies (α, ε2)-RDP for all y. Taking log on both sides and dividing by α− 1 gives

Dα(M3(D)∥M3(D
′)) ≤ ε1 + ε2

and hence M3 is (α, ε1 + ε2)-RDP. ■

Proposition 12.2 (Analyzing Gaussian DP). Dα

(
N
(
0, σ2

)
∥ N

(
µ, σ2

))
=
αµ2

2σ2
; in particu-

lar, if f has sensitivity 1, then the Gaussian mechanism N
(
0, σ2

)
satisfies

(
α,

α

2σ2

)
-RDP.

Proof. Note that

EQ

[(
P

Q

)α
]
=

∫ (
P

Q

)α

Q(X) dx =

∫
P (X)α

Q(X)α−1
dX

Hence,

Dα

(
N
(
0, σ2

)
∥ N

(
µ, σ2

))
=

1

α− 1
log

∫ 1

σ
√
2π

exp
(
−αx2

2σ2

)
exp
(

(1−α)(x−µ)2

2σ2

) dx


=
1

α− 1
log

 1

σ
√
2π

∫ ∞

−∞
exp

(
−αx

2

2σ2
+

(1− α)(x2 − 2xµ+ µ2)

2σ2

)
dx


=

1

α− 1
log

(
1

σ
√
2π

∫
exp

(
− (x− (1− α)µ)2

2σ2︸ ︷︷ ︸
=1

+
(1− α)2µ2

2σ2
− (1− α)µ2

2σ2

)
dx

)

=
1

α− 1
log

exp

(
(α2 − α)µ2

2σ2

) =
αµ2

2σ2
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as desired. Often with RDP, ε is treated as a function of α. ■
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13 f-Differential Privacy

Main reference for this lecture is Dong et al. [2022].

13.1 Hypothesis Testing Formulation of Differential Privacy

Recall that if M satisfies (ε, δ)-DP, then when testing

H0 : X or H1 : X
′

for H(X,X ′) ≤ 1 at type I error, the power is upper bounded by

min
{
eεα + δ, e−α(α− 1 + δ) + 1

}
We could generalize this by using other bounds on the power of such tests. Denote by

P the distribution of M(X)

Q the distribution of M(X ′)

Let 0 ≤ ϕ ≤ 1 be a rejection rule given y from either P or Q, we reject with probability ϕ(y). The
type I and II errors are

Type I Error = αϕ = EP [ϕ]

Type II Error = βϕ = 1− EQ[ϕ]

Definition 13.1 (Tradeoff Function/ROC). For any two probability distributions P and Q
on the same space, the tradeoff function T (P,Q) : [0, 1]→ [0, 1] is defined as

T (P,Q)(α) = inf
ϕ

{
βϕ
∣∣ αϕ ≤ α

}
,

which takes in type I errors and outputs type II errors.

Note that we are taking the infimum over all rejection rules. Geometrically, any tradeoff function
will be inside the triangle:

1

1

indistinguishable
(prefect privacy)perfectly

distinguishable
(no privacy)

0 α
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Closer the curve is to the y = −x + 1, more indistinguishable P and Q are. Conversely, closer the
curve is to the origin, more distinguishable they are.

Example 13.1. Consider a trivial one T (P, P ). Let R be any rejection set, then

α = P (R) and β = 1− P (R)

So T (P, P )(α) = 1− α.

Example 13.2. Suppose that P and Q have disjoint support:

R1 ⊆ Supp(P )

R2 = Supp(Q)

Let R = R1 ∪R2 be our rejection set, then

α = P (R) = P (R1) + P (R2) = P (R1)

β = 1−Q(R) = 1− (Q(R1) +Q(R2)) = 1− (0 + 1) = 0

Example 13.3. Consider T (N (0, 1),N (µ, 1))(α) where µ > 0. Recall from Neyman-Pearson
Lemma (NPL) that the optimal rejection region is of the form [t,∞).

Type I = Pr[Z ≥ t] = 1− Φ(t)

Type II = Pr[Z ′ ≤ t] = Pr[Z + µ ≤ t] = Φ(t− µ),

where Z ′ ∼ N (µ, 1) and Z ∼ N (0, 1). Using the equation of type I error:

α = 1− Φ(t) =⇒ t = Φ−1(1− α),

we substitute Φ−1(1− α) for t to get the expression of its corresponding type II error:

T (N (0, 1),N (µ, 1))(α) = Φ(Φ−1(1− α)− µ).

1

10

smaller µ

larger µ

The following proposition is characterization of a tradeoff function, which can be used to verify
if a function is a tradeoff function or not.
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Proposition 13.1. A function f : [0, 1]→ [0, 1] is a tradeoff function if and only if it is:

• Convex,

• Continuous,

• Non-increasing (weakly decreasing), and

• f(x) ≤ 1− x for x ∈ [0, 1].

Remark 13.1 (Observation). If f and g are tradeoff functions, thenmax{f, g} is a tradeoff function.

13.2 f-Differential Privacy

Definition 13.2 (f -DP). Let f be a tradeoff function. A mechanism M satisfies f -
Differential privacy (f -DP) if

T (M(X),M(X ′))(α) ≥ f(α)

for all α ∈ [0, 1] and for all H(X,X ′) ≤ 1.

1

10

f

is f -DP

not f -DP

also not f -DP

Remark 13.2. Notice that the f -DP definition is symmetric in the sense that the neighboring
relation is symmetric. We also have T (M(X ′),M(X)) ≥ f . So, we can restrict our attention to
symmetric tradeoff functions.

Proposition 13.2. Let M be f -DP, then M is

max{f, f−1}-DP,

where f−1(α) := inf
{
t ∈ [0, 1]

∣∣ f(t) ≤ α
}
for all α ∈ [0, 1].
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This provides a natural tighter lower bound when f is not symmetric. The tradeoff function
fS = max{f, f−1} is symmetric in that fS = (fS)−1.

1

10 f−1(0)

f−1

f

Remark 13.3. Finally, note that f -DP is a generalization of (ε, δ)-DP.

fε,δ(α) = max


0

1− δ − eεα
e−ε(1− δ − α)

1

10

1− δ

1− δ

slope −eε

slope e−ε

α

13.3 Gaussian Differential Privacy

While f -DP is a powerful privacy framework, it is nice to summarize the privacy guarantee in a
single number. In pure DP, ε was our privacy parameter. An alternative is µ-GDP. Let

Gµ := T (N (0, 1),N (µ, 1)) = Φ(Φ−1(1− α)− µ)

for µ ≥ 0. It is easy to see that Gµ ≤ Gµ′ when µ ≥ µ′.

Remark 13.4. This works out so nicely because Gaussian is log-concave and hence it has monotone
likelihood ratio, which gives us a rejection region in the form of [t,∞).
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Definition 13.3 (GDP). A mechanism M satisfies µ-Gaussian differential privacy (µ-GDP)
if it is Gµ-DP, that is

T (M(X),M(X ′)) ≥ Gµ

for all H(X,X ′) ≤ 1.

Theorem 13.1. Let f : X n → R has sensitivity ∆, then

M(X) = f(X) + z , z ∼ N

(
0,

∆2

µ2

)

satisfies µ-GDP.

Proof of Theorem 13.1. For any two X and X ′ s.t. H(X,X ′) ≤ 1, note that

M(X) ∼ N

(
f(X),

∆2

µ2

)

M(X ′) ∼ N

(
f(X ′),

∆2

µ2

)
Then, since T is preserved under invertible transformations,

T (M(X),M(X ′)) = T

N(f(X),
∆2

µ2

)
,N

(
f(X ′),

∆2

µ2

)
= T

N(0, ∆2

µ2

)
,N

(
f(X ′)− f(X),

∆2

µ2

)
= T

N (0, 1),N

((
f(X ′)− f(X)

)
µ

∆
, 1

)
= T

N (0, 1),N

(∣∣f(X ′)− f(X)
∣∣µ

∆
, 1

)
= G |f(X′)−f(X)|µ

∆

≥ Gµ

since
∣∣f(X ′)− f(X)

∣∣ ≤ ∆. ■

13.4 Post-Processing and Informativeness of f-DP

Let Proc: Y → Z be a (randomized) algorithm. If M : X n → Y is a mechanism, Proc◦M : X n →
Z is the post-processed mechanism.
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Lemma 8. For any two distributions P and Q, T (Proc(P ),Proc(Q)) ≥ T (P,Q).

Proof. Let Φ = {ϕ : Y → [0, 1]} and ΦProc = {ϕ : Z → [0, 1]}. Given ϕ ∈ ΦProc, then
ϕ ◦ Proc ∈ Φ. Consider

T (M(X),M(X ′)) = inf
ϕ∈Φ
{1− EM(X′)ϕ | EM(X)ϕ ≤ α}

≤ inf
ϕ∈ΦProc

{1− EM(X′)ϕ ◦ Proc | EM(X)ϕ ◦ Proc ≤ α}

= inf
ϕ∈ΦProc

{1− EProc◦M(X′)ϕ | EProc◦M(X)ϕ ≤ α}

= T (Proc(P ),Proc(Q))

■

Example 13.4. Basically, post-processing only makes the testing problem harder. For example, if
P = −Q then P 2 = Q2.

P Q P 2 = Q2

Proposition 13.3. If M is f -DP, then Proc ◦M is also f -DP.

Remark 13.5. ε-DP, (ε, δ)-DP, Renyi-DP all have post-processing properties. The following theo-
rem indicates that the tradeoff function is the most informative measure of indistinguishability.

Theorem 13.2 (Blackwell [1951]). Let P and Q be probability distribution on Y , and P ′

and Q′ are probability distribution on Z. The following statements are equivalent:

(1) T (P,Q) ≤ T (P ′, Q′).

(2) There exists a (randomized) function Proc: Y → Z such that Proc(P ) = P ′ and
Proc(Q) = Q′.a

aProbably a better notation is Proc(X) ∼ P ′ such that X ∼ P , and so on.
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There is nothing new about (2) =⇒ (1). Post-processing induces on order on pairs of distribu-
tions, called the Blackwell order. If (2) holds, we write

(P,Q) ≼Blackwell (P
′, Q′)

and read it as (P,Q) is easier to distinguish than (P ′, Q′) in the Blackwell sense. Similarly,
if T (P,Q) ≤ T (P ′, Q′), we write

(P,Q) ≼tradeoff (P ′, Q′)

and read it as (P,Q) is easier to distinguish than (P ′, Q′) in the testing sense.

For any privacy notion, we get an order ≼ on pairs of distributions. If the privacy measure has
post-processing property, then ≼ must be consistent with ≼Blackwell, i.e.

(P,Q) ≼Blackwell (P
′, Q′) =⇒ (P,Q) ≼ (P ′, Q′)

Denote Ineq(≼) =
{
(P,Q;P ′, Q′)

∣∣ (P,Q) ≼ (P ′, Q′)
}
be the set of all comparable pairs under the

order ≼. A privacy notion satisfies post-processing if and only if the induced order ≼ satisfies

Ineq(≼) ⊇ Ineq(≼Blackwell)

Hence, a reasonable privacy definition must have Ineq(≼) large enough to contain Ineq(≼Blackwell),
but we do not want Ineq(≼) to be ”too large.”

Example 13.5. Consider the privacy notion based on a trivial divergence

D0(P∥Q) = 0 for all P and Q

Ineq(≼D0) is the largest possible but is not at all informative about indistinguishability.

Remark 13.6. Theorem 13.2 stated that Ineq(≼f -diff) = Ineq(≼Blackwell). So f -DP is the most
informative.

13.5 Conversion of f-DP to Divergence-based DP

Let D(·∥·) be a ”divergence” that takes in two probability distributions on a common space and
outputs a number. We say that D has the data processing inequality (DPI) if

D(Proc(P )∥Proc(Q)) ≤ D(P∥Q)

Proposition 13.4. If D(·∥·) satisfies DPI, then there exists functional ℓD : T → R such that
D(·∥·) = ℓD(T (P,Q)) for every P and Q, where T is a set of tradeoff functions.

Lemma 9. If T (P ′, Q′) ≥ T (P,Q), then D(P ′∥Q′) ≤ D(P∥Q). In particular, if T (P ′, Q′) =
T (P,Q), then D(P ′∥Q′) = D(P∥Q).

Returning to the proposition, we define ℓD(T (P,Q)) = D(P̃ , Q̃) with any pair (P̃ , Q̃) such that

T (P̃ , Q̃) = T (P,Q).
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Example 13.6 (F -divergence). Let P and Q be distributions with densities P and Q (with respect
to a common base measure). For a convex function F : (0,∞) → R such that F (1) = 0, the
F -divergence DF (P∥Q) is

DF (P∥Q) =
∫
{p,q>0}

F

(
p

q

)
dQ+ F (0)Q[p = 0] + τFP [q = 0]

where F (0) = lim
x→0+

F (t), τF = lim
t→∞

F (t)

t
, and we set F (0) · 0 = τF · 0 = 0 even if F (0) or τF are

∞. Note that all F -divergence satisfy DPI, i.e. post-processing. For example,

− Total variation: F (t) = |t− 1|/2,

− KL variation: t log t.

Proposition 13.5. Let f = T (P,Q) and zf = inf
{
x ∈ [0, 1]

∣∣ f(x) = 0
}
be the first zero

of f . The functional ℓF : T → R that computes the F -divergence of DF (P∥Q) is

ℓF (f) =

∫ zf

0

F (|f ′(x)|−1)
∣∣f ′(x)

∣∣ dx+F (0)(1− f(0)) + τF (1− zf )

Example 13.7 (Proposition 13.5).

• ℓTV(f) =
1

2

∫ 1

0

∣∣1 + f ′(x)
∣∣ dx,

• ℓKL(f) = −
∫ 1

0

log
∣∣f ′(x)

∣∣ dx, and
• Renyi-divergence can be expressed as a function of an F -divergence but we know ℓ has post-
processing

ℓRenyi
α (f) =

{
1

α−1
log
∫ 1

0

∣∣f ′(x)
∣∣1−α

dx , if zf = 1

∞ , if zf < 1

Note the exact equalities here – no inequalities here!

Proposition 13.6. If M is f -DP then it is (α, ℓRenyi
α (f))-RDP for any α > 1.

Corollary 13.1 (zCDP). If M is µ-GDP then it is

(
α,

1

2
µ2α

)
-RDP for any α > 1. And this

is called

(
P =

1

2
µ2

)
-zCDP (zero concentrated DP).
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We can convert f -DP to any divergence-based DP guarantee. It is not always possible to convert
them back. Even when {Dα(P∥Q);α > 1} is considered as an infinite-dimensional object, it still
does not induce Blackwell order, that is,

Ineq(≼Renyi) ⊋ Ineq(≼Blackwell)

So there exists two pairs of distributions, where one is easier to distinguish in the Rényi sense, but
not in the Blackwell sense.

Let Pε and Qε denote Bernoulli distribution with success probabilities
eε

1 + eε
and

1

1 + eε
respec-

tively.

Proposition 13.7. There exists ε > 0 such that both of the following statements are true:

(a) For all α > 1, Dα(Pε∥Qε) ≤ Dα(N (0, 1)∥N (ε, 1)).

(b) TV(Pε, Qε) > TV(N (0, 1),N (ε, 1)).

In fact (a) holds for all α.

(a) says that (N (0, 1),N (ε, 1)) ≼Renyi (Pε, Qε).

(b) excludes the possibility (N (0, 1),N (ε, 1)) ≼Blackwell (Pε, Qε), since otherwise DPI of TV
would imply TV(Pε, Qε) ≤ TV(N (0, 1),N (ε, 1)).

13.6 Primal-Dual Connection to (ε, δ)-DP

Similar to RDP, we can convert f -DP to an infinite collection of (ε, δ)-DP guarantees. Unlike RDP,
we can also convert back loss-lessly.

Proposition 13.8 (Dual to Primal). Let I be an arbitrary index set such that for each i ∈ I,
we have εi ∈ [0,∞) and δi ∈ [0, 1]. A mechanism is (εi, δi)-DP for all i ∈ I if and only if it
is f -DP with f(α) = supi fεi,δi(α).

1

10

1

10
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The black curve on the right is the f from the proposition. Note that the construction f is a
symmetric tradeoff function.

Proposition 13.9 (Primal to Dual). For a symmetric tradeoff function f , the following are
equivalent:

(a) M is f -DP.

(b) M is (ε, δ)-DP for every (ε, δ) such that −eεα + (1 − δ) is tangent to f(α) at some
point.

(c) M is (ε, δ(ε))-DP for all ε ≥ 0 with δ(ε) = 1+ f ∗(e−ε), where f ∗(y) = sup0≤x≤1 yx−
f(x) is the convex conjugate of f .

Note that (ε, δ(ε)) and (ε(δ), δ) are called privacy profiles on equivalent framework to f -DP.

13.7 Group Privacy

We say D and D′ are k-neighbors if there exists a sequence of databses

D = D0, D1, D2, · · · , Dk = D′

such that Di and Di+1 are neighbors (or identical) for all i = 0, 1, · · · , k − 1.

Definition 13.4. A mechanism is f -DP for groups of size k if

T (M(D),M(D′)) ≥ f

for all k-neighbors D and D′

Let us denote f ◦k = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
k times

. And let f ◦̂g(x) = f(1− g(x)) and f ◦̂k = f ◦̂ f ◦̂ · · · ◦̂ f︸ ︷︷ ︸
k times

so that f ◦̂ g = 1− (1− f) ◦ (1− g) and f ◦̂k = 1− (1− f)◦k.

Lemma 10. (1) f ◦̂ g is a tradeoff function if f and g are tradeoff functions.

(2) (f ◦̂ g)−1 = (g−1) ◦̂ (f−1) and if f is symmetric then so is f ◦̂k.

Lemma 11. Let f and g be tradeoff functions. Suppose T (P,Q) ≥ f and T (Q,R) ≥ g,
then

T (P,R) ≥ g ◦̂ f.

Proof of Lemma 11. Fix α ∈ [0, 1] and let ϕ be the optimal testing function for

H0 : P v.s. H1 : R at type I error α
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then EP [ϕ] = α (type I) and 1 − ER[ϕ] = T (P,R)(α) (type II). Note that ϕ is suboptimal for
H0 : Q v.s. H1 : R with type I error EQ[ϕ], the type I and type II errors must be above the tradeoff
function g.

g(EQ[ϕ]) ≤ T (Q,R)(EQ[ϕ]) ≤ 1− ER[ϕ]

Similarly, ϕ is suboptimal for H0 : P v.s. H1 : Q. So,

1− EQ[ϕ] ≥ T (P,Q)(EP [ϕ]) = T (P,Q)(α) ≥ f(α),

which gives EQ[ϕ] ≤ 1− f(α).

Together, we have

T (P,Q)(α) = 1− ER[ϕ] ≥ g(EQ[ϕ]) ≥ g(1− f(α)) = g ◦̂ f(α)

since g is decreasing for the last inequality. ■

Theorem 13.3. if M is f -DP (for groups of size 1) then it is
(
1− (1− f)◦k

)
-DP for groups

of size k. If M is µ-GDP, then it is kµ-GDP for groups of size k.

Proof of Theorem 13.3. For f -DP part, one can apply Lemma 11 k−1 times. For the GDP claim,
note that Gµ◦̂Gµ′ = Gµ+µ′ because

Gµ ◦̂ Gµ′(α) = Gµ(1−Gµ′(α)) = Φ(Φ−1(Gµ′(α))− µ) = Gµ+µ′(α)

since Gµ′(α) = Φ(Φ−1(1− α)− µ′). ■

Remark 13.7. If we take f̃(α) = f(1− α) as in Awan and Dong [2022], then for group of size k,

we get f̃ ◦k.

13.8 Composition in f-DP

Let M1 : X → Y1 and M2 : X → Y1 → Y2. The joint mechanism M : X → Y1 × Y2 is defined as

M(X) = (M1(X),M2(X,M1(X)))

Remark 13.8. Composition is closed and tight in the f -DP framework!

Definition 13.5 (Tensor Product). The tensor product of two tradeoff functions f =
T (P,Q) and g = T (P ′, Q′) is defined as

f ⊗ g = T (P × P ′, Q×Q′)

and we write f⊗k = f ⊗ f ⊗ · · · ⊗ f︸ ︷︷ ︸
k times

.

First, we need to check that ⊗ is well-defined.
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Lemma 12 (⊗ is well-defined).

(1) If f is T (P,Q) = T (P̃ , Q̃) then T (P × P ′, Q×Q′) = T (P̃ × P ′, Q̃×Q′).

(2) ⊗ is commutative and associative.

(3) If g1 ≥ g2 then f ⊗ g1 ≥ f ⊗ g2.

(4) f ⊗ Id = Id⊗ f = f where Id(α) = 1− α.

(5) (f ⊗ g)−1 = f−1⊗ g−1, which implies that if f and g are symmetric then f ⊗ g is symmetric.

Theorem 13.4. Let Mi( · ; y1, · · · , yi−1) be fi-DP for all y1 ∈ Y1, · · · , yi−1 ∈ Yi−1 then the
k-fold composed mechanism M : X → Y1 × · · · × Yk is f1 ⊗ f2 ⊗ · · · ⊗ fk-DP.

This theorem is tight in that it cannot be improved in general. For example, if M2 does not
depend on the output of M1,

T (M(X),M(X ′)) = T (M1(X)×M2(X),M1(X
′)×M2(X

′))

= T (M1(X),M1(X
′))⊗ T (M2(X),M2(X

′))

If X and X ′ are neighboring datasets such that

T (M1(X),M1(X
′)) = f1 and T (M2(X),M2(X

′)) = f2,

we conclude that f1 ⊗ f2 is the tightest possible bound on their composition.

In the case of GDP,
Gµ1 ⊗ · · · ⊗Gµk

= G√
µ2
1+···+µ2

k

So, k-fold composition of µ-GDP mechanisms is
√
µ2
1 + · · ·+ µ2

k-GDP.

13.9 Central Limit Theorem for Composition

The moral here is that when composing many privacy mechanisms, each with a small privacy loss
budget (close to perfect indistinguishability) in the limit, the privacy guarantee approaches µ-GDP
for some µ.

The µ parameter depends on certain functionals of the tradeoff functions:

kl(f) = −
∫ 1

0

log
∣∣f ′(x)

∣∣ dx
k2(f) =

∫ 1

0

log2
∣∣f ′(x)

∣∣ dx
k3(f) =

∫ 1

0

∣∣∣log ∣∣f ′(x)
∣∣∣∣∣3 dx

k3(f) =

∫ 1

0

∣∣∣log∣∣f ′(x)
∣∣− kl(f)∣∣∣3 dx
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all of which take values in [0,∞).

Those functionals calculate moments of PLRV (i.e. moments of the log likelihood ratio of P
and Q such that f = T (P,Q)). We write

kl = (kl(f1), · · · , kl(fk))

and similarly for other functionals.

Theorem 13.5. Let f1, · · · , fk be symmetric tradeoff functions such that k3(fi) <∞ for all
i = 1, · · · , k. Denote

µ =
2∥kl∥1√

∥k2∥1 −∥kl∥
2
2

γ =
0.56

∥∥∥k3∥∥∥
1(

∥k2∥1 −∥kl∥
2
2

) 3
2

Assume that γ < 1/2, then for all α ∈ [γ, 1− γ],

Gµ(α + γ)− γ ≤ f1 ⊗ · · · ⊗ fk ≤ Gµ(α− γ) + γ

This is a Berry-Esseen type result, as the figure below suggests:
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Theorem 13.6 (Berry-Esseen result). Let
{
fki
∣∣ 1 ≤ i ≤ k

}∞
k=1

be a triangular array of sym-
metric tradeoff functions, and assume there exists K ≥ 0 and s > 0 such that as k →∞:

(1)
k∑

i=1

kl(fki)→ K

(2) max
1≤i≤k

kl(fki)→ 0

(3)
k∑

i=1

k2(fki)→ s2

(4)
k∑

i=1

k3(fki)→ 0

then lim
k→∞

fk1 ⊗ fk2 ⊗ · · · ⊗ fkk(α) = G 2K
s
(α) uniformly for all α ∈ [0, 1].

Remark 13.9. CLT is theoretically interesting; however, asymptotic privacy guarantees are not
accepted in practice. The Berry Esseen result gives a lower bound, but it has a ”delta.” In general,
evaluating the exact tensor product of tradeoff functions is a difficult testing problem.

13.10 Subset Sampling in f-DP

Let 1 ≤ m ≤ n and a dataset X ∈ X n define Samplem(X) to be a subset of X, chosen uniformly
among all subsets of size m.

For a mechanism M defined on X n, call M ◦ Samplem(X) =M(Samplem(X)) the mechanism
which applies M to the subsampled dataset. Note that the subsample itself is not released.

Let f be a tradeoff function. Let 0 ≤ ρ ≤ 1 and define

fρ = ρf + (1− ρ)Id

where Id(x) = 1− x. Note that fρ is asymmetrical in general.

Definition 13.6 (Subsampling Operator). For any 0 ≤ p ≤ 1, define the Cp acting on
tradeoff function as

Cp(f) = ConvexHull

(
min

{
fp, f

−1
p

})
and call Cp the subsampling operator.

Theorem 13.7. If M is f -DP on X n then M ◦ Samplem(X) is Cp(f)-DP on X n where
p = m/n.
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1

10

Id

f−1
p

fp

f

Cp(f) (convex hull)

Corollary 13.2. IfM is (ε, δ)-DP on Xm, then the subsampled mechanismM ◦Samplem(X)
is Cp(fε,δ)-DP where

Cp(fε,δ)(α) = max

fε′,δ′(α)1− pδ − p
(

eε−1
eε+1

)
− α

where ε′ = log(1− p+ peε), δ′ = pδ, and p = m/n.

1

10

Id

fε,δ

cp(f)

fε′,δ′

Remark 13.10 (Takeaway). (ε, δ)-DP is not expressive enough to communicate subsampling in a
single (ε, δ) pair. Note if ε = 1, δ = 1, and p = ε ≤ 1 (target), then ε′ = log(1 − ε(1 + e)) ≤ e,
which is one of the quantities in the pure-DP Poisson subsampling result. Stay tuned!
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14 Dominating Pairs

The main reference for this lecture is Zhu et al. [2022].

14.1 Privacy Loss Random Variable

Definition 14.1 (PLRV). Let X and Y be two random variables on the same space with
densities P and Q respectively. The privacy loss random variable is

PLRV(X | Y ) = log
P (X)

Q(X)
where X ∼ P and Y ∼ Q

Lemma 13 (PLRV is sufficient). Let X ∼ P and Y ∼ Q be two r.v.s on X . Define L(X) : X n → R

by L(x) = log
Q(x)

P (x)
the log-likelihood ratio statistics. Note that

L(X)
d
= −PLRV(X | Y )

L(Y )
d
= PLRV(Y | X)

Then, T (X, Y ) = T (L(X), L(Y )) = T (−PLRV(X | Y ),PLRV(Y | X)).

Proof of Lemma 13. First, by post-processing

T (X, Y ) ≤ T (L(X), L(Y ))

and for the other direction, we use Neyman-Pearson Lemma. The optimal test for H0 : X v.s.
H1 : Y of size α and of the form

ϕ(X) =


1 where L(X) > t

C where L(X) = t

D where L(X) < t

where C and t are chosen s.t. EX∼P [ϕ(X)] = α. The type I error is

EX∼P [ϕ(X)] = EX∼P

[
1(L(X) > t) + c1(L(X) = t)

]
= Pr

X∼P

[
L(X) > t

]
+ c Pr

X∼P

[
L(X) = t

]
which only depends on L(X). And the type II error is

1− EY∼Q[ϕ(Y )] = 1− EY∼Q

[
1(L(Y ) > t) + c1(L(Y ) = t)

]
= Pr

Y∼Q

[
L(Y ) ≤ t

]
− c Pr

Y∼Q

[
L(Y ) = t

]
which only depends on L(Y ).
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When testing H0 : L(X) v.s. H1 : L(Y ), we can consider the particular test:

ψ(L) = 1(L > t) + c1(L = t)

(which may be suboptimal) which has the same type I and type II errors as above. So,

T (L(X), L(Y )) ≤ T (X, Y )

Together, T (X, Y ) = T (L(X), L(Y )) = T (−PLRV(X | Y ),PLRV(Y | X)). ■

Corollary 14.1. If PLRV(X | Y ) and PLRV(Y | X) are continuous, with CDFs F and G,
then

T (X, Y )(α) = G(F−1(1− α))

Remark 14.1. We can recover T (P,Q) if we know PLRV(P | Q) and PLRV(Q | P ). So, they are
also sufficient for Renyi divergence, f -divergence, and ε, (ε, δ)-DP.

Lemma 14. (Assume that P and Q have same support, i.e. PLRV’s are finite.) The distribution
of PLRV(Y | X) can be expressed as a function of the distribution of PLRV(X | Y ). In particular,
if

PLRV(X | Y ) ∼ F and PLRV(Y | X) ∼ G

then G(x) =

∫ x

−∞
etdF (t), i.e. there exists P and Q such that these are PLRVs.

Proof of Lemma 14. By Fundamental theorem of calculus and Radon-Nikodym theorem,

G(x) =

∫ x

−∞
dG(t) =

∫ ∞

−∞
1

(
log

dQ

dP
(w) ≤ x

)
dQ(w)

=

∫ ∞

−∞
1

(
log

dQ

dP
(w) ≤ x

)
dQ

dP
(w)dP (w)

=

∫ x

−∞
etdF (t)

■

Lemma 15. The PLRV’s are uniquely determined by f = T (P,Q)

F (x) = 1− inf{t | −ex is the slope a tangent line to f at t},

where F (x) is the CDF of PLRV(X | Y ) with X ∼ P and Y ∼ Q.

Remark 14.2. Note that using f , we have

f(α) = G(F−1(1− α)) =⇒ G(x) = f(1− F (x)) (∵ Continuity)

=⇒ G(x) =

∫ x

−∞
etdF (t) (∵ Finite PLRV)
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Proof of Lemma 15 (Sketch). Assume F and G are continuous and 1 − F (x) is a point where f
is differentiable. Start with f(1− F (x)) = G(x), take derivative of both sides.

f ′(1− F (x))(−F ′(x)) = G′(x) =⇒ f ′(1− F (x)) = −G
′(x)

F ′(x)
= −ex

=⇒ 1− F (x) = (f ′)−1(−ex) ■

Corollary 14.2 (Symmetry). If f is symmetric, i.e. f = T (X, Y ) = T (Y,X), then

PLRV(X | Y )
d
= PLRV(Y | X)

Proposition 14.1 (Composition). Let (X1, X2) ∼ P1 × P2 and (Y1, Y2) ∼ Q1 ×Q2, then

PLRV((X1, X2) | (Y1, Y2)) = PLRV(X1 | Y1) + PLRV(X2 | Y2)

Proof of Proposition 14.1. Let X1 ∼ P1 and X2 ∼ P2, then

PLRV((X1, X2) | (Y1, Y2)) = log
P1(X1)P2(X2)

Q1(X1)Q2(X2)

= log
P1(X1)

Q1(X1)
+ log

P2(X2)

Q2(X2)

= PLRV(X1 | Y1) + PLRV(X2 | Y2) ■

Remark 14.3 (Tensor Product). For tensor product of tradeoff functions (composition) f⊗g where
f = T (P1, Q1) and g = T (P2, Q2), the PLRV for f ⊗ g is the same as the sum of the PLRV’s for
f and g.

So, composition of mechanism is equivalent to tensor product of tradeoff functions or to convo-
lution of PLRVs. Convolution is still difficult, but is easier with Fourier transforms.

Remark 14.4 (Idea). We have 3 ways of calculating δ for an ε

1. δ(ε) = 1 + f ∗(−eε)) is the upper δ

2. δ(ε) = 1− eε + eεF (ε) is the upper δ, where F is the cdf of PLRV(P,Q)

3. δ(ε) = Heε(P ||Q) is the lower δ using slope −e−ε

1
(upper) δ

10 δ
(lower)
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This is sometimes called the privacy profile (ε, δ(ε))

14.2 Characteristic Functions

For a real-valued random variable X ∼ F , its characteristic function is φX(t) = E[eitX ] =∫∞
−∞ e−itxdF (x).

Remark 14.5. If X and Y are independent, φX+Y (t) = φX(t)φY (t).

Proposition 14.2. Let f1, f2, · · · , fk be tradeoff functions, and let (P1, Q1), · · · , (Pk, Qk)
be the PLRVs for f1, · · · , fk. Let φPi

(t) and φQi
(t) be the characteristic functions for Pi and

Qi. Then φ∑
Pi
(t) and φ∑

Qi
(t) are the characteristic functions for the PLRVs of f1⊗· · ·⊗fk.

14.3 Dominating Pairs

Definition 14.2 (Dominating Pair). Let M be a mechanism. We say (P,Q) is a dominating
pair for M if

T (M(X),M(X ′))(α) ≥ T (P,Q)(α)

for all H(X,X ′) ≤ 1. In other words, (P,Q) is a dominating pair if M satisfies T (P,Q)-DP.

Equivalently, for all α ≥ 0,

Hα(M(X)||M(X ′)) ≤ Hα(P ||Q)
for all H(X,X ′) ≤ 1, where Hα(P ||Q) = EX∼Q[

dP
dQ

(X)− α]+ and setting α = eε, Hα returns δ.

Theorem 14.1. If (P,Q) dominates M and (P ′, Q′) dominates M ′, then (P × P ′, Q×Q′)
dominates the composed mechanism.

We previously defined a dominating pair (P,Q) for a mechanism M as any pair satisfying
T (P,Q) ≤ T (M(D),M(D′)) for adjacent D and D′. Equivalently, for all α ≥ 0,

Hα(M(D)∥M(D′)) ≤ Hα(P∥Q)

for all adjacent D and D′. Recall that Hα(P∥Q) = EX∼Q

[
dP

dQ
(X)− α

]
+

and setting α = eε, Hα

returns “δ.”

14.4 Tight Dominating Pairs

We say that (P,Q) is tightly dominating for M if for all lower bounds,

f ≤ T (M(D),M(D′))

f ≤ T (P,Q) ≤ T (M(D),M(D′))
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Equivalently, for all α ≥ 0,

sup
D and D′
adjacent

Hα(M(D),M(D′)) = Hα(P∥Q)

Here is a result that seems obvious, and even if it is not, it is good to know.

Proposition 14.3. Any mechanism has a tight dominating pair of distributions. For a tradeoff
function, note that supremum of all tradeoff function lower bounds is a tradeoff function, and
any tradeoff function can be realized by some pair of distribution.

Example 14.1. Let P = U(0, 1) and Q has a CDF{
f(1− x) when 0 ≤ x < 1

1 when x = 1

So, Q has density f(1− x) and atom at 1, namely Q({1}) = 1− f(0).
Lemma 16. For H : R≥0 → R, there exists P and Q s.t. H(α) = Hα(P∥Q) iff

H ∈
{
H : R≥0 → R

∣∣ H is convex, decreasing, H(0) = 1, and H(x) ≥ (1− x)+
}

Moreover, we can construct P and Q

P has CDF 1 +H∗(X − 1)

Q ∼ U(0, 1)
based on duality between tradeoff functions and Hockey-stick divergence. H∗ here denotes the
convex conjugate of H.

A related concept is worst-case pair of datasets D and D′, which satisfies that (M(D),M(D′))
is tightly dominating for M . While there always is a tight dominating pair, there does not always
exist a worst-case pair of datasets.

14.5 Rephrasing with Dominating Pairs

Theorem 14.2 (Rephrasing Composition with Dominating Pairs). If (P,Q) dominate M ,
and (P ′, Q′) dominate M ′, then (P × P ′, Q × Q′) dominates the composed mechanisma

(M,M ′).

aIt may be adaptive. Need to be checked.

Definition 14.3 (Dominating Pairs and Subsampling – Notations).

• Poisson Subsampling: Denote by Sγ
Poisson which includes each datapoint indepen-

dently w.p. 0 ≤ γ ≤ 1.

• Subset Sampling: Denote by Sγ
Subset, which samples a dataset of size m (γ = m/n)

uniformly at random.
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The following result not only considers add/delete notion of adjacency, but treats add and delete
separately. It is necessary to get a close-form expression.

Theorem 14.3. Let M be a mechanism.

(1) If (P,Q) dominates M for add neighbors, then

– (P, (1− γ)P + γQ) dominates M ◦ Sγ
Poisson for add neighbors, and

– ((1− γ)Q+ γP,Q) dominates M ◦ Sγ
Poisson for removing neighbors.

(2) If (P,Q) dominates M for replacing neighbors, then

– (P, (1− γ)P + γQ) dominates M ◦ Sγ
Subset for add neighbors, and

– ((1− γ)Q+ γP,Q) dominates M ◦ Sγ
Subset for removing neighbors.

To get (ε, δ) guranatee for “add/remove” for k-fold composition of a subsampled mechanism,
we take the point-wise maximum

max
{
Heε(P

k
1 ∥Qk

1), Heε(P
k
2 , Q

k
2)
}

where (P1, Q1) is the remove only pair and (P2, Q2) is the add only pair.

Remark 14.6. Some existing literature has mistakenly evaluated the privacy cost of (γP + (1 −
γ)Q,Q) for Poisson subsampled mechanism. However, by doing this, they are essentially only
providing privacy guarantees for “remove only” neighbors.
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